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Local gauge symmetry in QED/ED implies

¢(n) == lim r’n-E(nr), neS?

r—o0

(spacelike asymptotic flux)

is conserved.
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Fact
Local gauge symmetry in QED/ED implies
— m 2p. 2
¢(n) = rI|_>nc1>or n-E(nr), nesS

(spacelike asymptotic flux)

is conserved.

Goal: Study for classical ED
asymptotic constants of motion <+ soft-photon theorem
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Dynamics of a particle with charge e and radial “smeared” charge
distribution @ € C2°(IR3) is determined by
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Equations and solutions

Dynamics of a particle with charge e and radial “smeared” charge
distribution @ € C2°(IR3) is determined by

Definition (Maxwell-Lorentz equations)

V- E(x,t) = e (x — q(1))

V-B(x,t) =0,
0:E(x,t) =V x B(x,t) —ep (x —q(t)) v(t),
9:B(x,t) = =V x E(x, t),
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Equations and solutions

@ Rewrite as a generalized equation
d
2Y(t)=F(Y(t)),Y(0) = YO

@ Introduce phase space set M of the electric magnetic fields
and trajectory.
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Equations and solutions

@ Rewrite as a generalized equation
d
2Y(t)=F(Y(t)),Y(0) = YO

@ Introduce phase space set M of the electric magnetic fields
and trajectory.

Theorem (A. Komech, H. Spohn, 2000)

Let YO = (EO, BY, qO, vo) € M. Then the integral equation
associated with the equations of motion,

Y(t) = Y°+/0tF(Y(s)) ds,

has a unique solution Y (t) = (E(-, t), B(-, t), q(t), v(t)) €
for all t € Rxq, which is continuous in t and satisfies Y (0) = Y©.
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Equations and solutions

Remark: Uniqueness and existence of solutions holds also for
t <O0.
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Equations and solutions

Remark: Uniqueness and existence of solutions holds also for
t <O0.

Fort > 0: E(t) = 0¢Gret,t * E° + V X (Grer,e * B)

t
—/0 ds {V Gret,t—s * p(s) + 0t Gret,t—s * j(5) }

where Gret ¢(x) := 2(7725(|x| —t).
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Remark: Uniqueness and existence of solutions holds also for
t <O0.

Fort > 0: E(t) = 0¢Gret,t * E° + V X (Grer,e * B)
t
- /0 ds {VGret,tfs * P(S) + atGret,tfs *1(5)}

where Gret ¢(x) := 2(7725(|x| —t).

Fort <O0: E(t) :at(_Gadv,t)>kE()"|_VX (_GadVvt*BO)
t
_ /0 ds {V Gagy.c < %0(5) + 3 Gague s %j(5)}

where G,qy ¢ = — 4m O(|x| + t) = Gret,—t(x).
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Remark: Uniqueness and existence of solutions holds also for
t <O0.

Fort > 0: E(t) = 0¢Gret,t * E° + V X (Grer,e * B)
t
- /0 ds {VGret,tfs * P(S) + atGret,tfs *1(5)}

where Gret ¢(x) := 2(7725(|x| —t).

For t e R: E(t) =0:G* E®+V x (G, x BY)

t
- /0 ds {VGret/adv,t—s * P(S) + atGret/adv,t—s *./(S)}

where Gt := Gret,t — Gadv,t-
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Equations and solutions

Example (Charge solitons/Travelling waves)

The solutions traveling with constant velocity |v| < 1 and starting
at ¢ € IR3 are uniquely given by

Y(t)=(E,(-—q—vt),B,(-—qg—vt), g+ vt,v) € M,
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Equations and solutions

Example (Charge solitons/Travelling waves)

The solutions traveling with constant velocity |v| < 1 and starting
at ¢ € IR3 are uniquely given by

Y(t)=(E,(-—q—vt),B,(-—qg—vt), g+ vt,v) € M,

where
B,(x) = —v X Véye(x),
E,(x) = =Vup(x) + v (v- Voe(x))
and
Pu(x) == . L Puo(x) = (271) 2, % p(x)

41t/ (x/7)2 + (v - x)?
for all x € R3\{0}.
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Asymptotic dynamics of charges

For any o € [0, 1] define M7 C M by the condition

[ECa t)] + B )] + X[ (IVE(x 1) +[VB(x, 1)]) < [T+

for all |x] > Rand C,R > 0.
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Asymptotic dynamics of charges

For any o € [0, 1] define M7 C M by the condition

[ECa t)] + B )] + X[ (IVE(x 1) +[VB(x, 1)]) <

for all |x] > Rand C,R > 0.

Theorem (A. Komech, H. Spohn, V. Imaikin, 2000)

If |e| < € holds for a suitable € and Y (0) € MY, then the
following statements are true:

Q@ IC>0:VteR: |v(t)| < C(1+|t])~t7
@ There exist scattering fields
Zse(t) = (Esc(+ t), Bse(+, t)) C M such that

E(t) — By (- — q()) 22 Ec (1),
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Asymptotic constants of motion

Let F be the Faraday (field strength) tensor with corresp. Fourier
transform F.
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Asymptotic constants of motion

Let F be the Faraday (field strength) tensor with corresp. Fourier
transform F.

In the situation of the previous theorem:

Theorem (W. Dybalski, D.V.H., 2019)

The limit F(%, t) = lim | |x|*F(x, t) exists for any t € R if
S()? 0) exists. In particular, it holds that § is conserved, i.e.

§(.t) =F(%,0) withg= - teR.

x|
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In this talk:

Theorem (W. Dybalski, D.V.H., 2019)

The limit F(k, t) := lim o |k|F(k, t) exists for any t € R if
F(k,0) exists. In particular, it holds that F is conserved, i.e.

Flht)= F(k,0)  with k= ”;| teR
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Asymptotic constants of motion

In this talk:

Theorem (W. Dybalski, D.V.H., 2019)

The limit F(k, t) := lim o |k|F(k, t) exists for any t € R if
F(k,0) exists. In particular, it holds that F is conserved, i.e.

Flht)= F(k,0)  with k= ”;| teR

Sketch of proof: Here, only for electric component
E(k, t) = im0 |k|E(k, t) and t > 0.



Main results
00000

Asymptotic constants of motion

Proof (sketch): From proof of the previous theorem:
E(x,t) = 3:Ge % [E(-,0) = Eyo)(- — a(0))] (x)
+V x {Gex |E(-0) = By (- = 9(0))| (x)
~[as [a Gel oy o (4() - VOE —q(s))(x)
9 {6l (01) B~ a(s) (0}

+Eu(x—q(1))

in terms of the soliton fields and the retarded propagator
Ge(x) = z20(|x| — ).
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Asymptotic constants of motion

Proof (sketch): Use the distributional Fourier transform
E(k, t) = cos(|k|t) [E(k, 0) — Ev(o)(k)e"kq(o)}
+ ik x {sin([K|t) [E(k,0) — E,(q) (k)@ }
- [ ds[cos<|k|<t ) (¥(s) - V) E, (k)&
+ ik x {sin([K|(t = 5)) ((s) vv>rsv<k>efkq<s>}]

+ E, (k)e™a(s),
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Asymptotic constants of motion

Proof (sketch): Thus, taking the limit yields for v = v(t)

~

E(k,t) = E(k,0) — &, (k) + &, (k)

)]+ (k)
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Soft-photon theorem

In the situation of the previous theorem:

Theorem (W. Dybalski, D.V.H., 2019)

The quantities

}-sc,i(i() = lim |k|Fs+(k, t),
|k|—0

Frow(k) = lim |k|Fp (K, t)
|k|—0

are well-defined and are related with each other via:

]:sc,+(f<) +-7:V+oo(i() = -Fsc,f(i() —J’_‘vaoo(l})'
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Soft-photon theorem

In the situation of the previous theorem:

Theorem (W. Dybalski, D.V.H., 2019)

The quantities

Focr(k) = lim |k|Focx(k, t),
|k|—0

Fuuw(k) = lim |k|Fo., (k. t)
|k|—0

are well-defined and are related with each other via:

]:sc,+(f<) +-7:V+oo(i() = -Fsc,f(i() —J’_‘vaoo(l})'

Remark: An analogous statement holds for §.
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Soft-photon theorem

Proof (sketch): (here, only for electric component)

E(x,t) — Esc1(x, t)

~ ["as [aTGT\H_S « (V) - V)E(- — a(s))(x)
49 {6l L+ (016 B~ 9(5) ()}

+ Ev(t) (X - q(t))
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Soft-photon theorem

Proof (sketch): (here, only for electric component)

E(x,t) — Bt (x, 1)
= [ d5[0cGel yx (7(5) - T~ alo)(
1V x {G | % (0(s) - V,)B(- — q(s))(x)}}
+ Ey(ry(x — q(1)).
Thus, we find similarly to the previous proof that
E(k) = Eyiey (k) = Escr (ki 1) = Ev (k) = Eyy ()

= E(k) =Escs(k)+ &y (k) = Ec— (k) + &, (k).
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We showed that

Ese i (k) = Escm (k) = — (Ev, (k) — & (K)).
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We showed that

~

Ese i (k) = Escm (k) = — (Ev, (k) — & (K)).

transverse

and thus for any k € R3\{0} and longitudinal initial data
Eic i (k) = — (PuEy,) (k) + R(k),

where R € 0(1/|k|) and Py is the transverse projection w.r.t.
k= k/|k|.
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We showed that

~

Ese i (k) = Escm (k) = — (Ev, (k) — & (K)).

transverse

and thus for any k € R3\{0} and longitudinal initial data
Eic i (k) = — (PuEy,) (k) + R(k),

where R € 0(1/|k|) and Py is the transverse projection w.r.t.
k= k/|k|.

= Esr = lim |k|Es i (K, t)
|k|—0

e ((Ptr&)vm) (k- m))

" (2m)3/2 1— (k- ve)?
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For which w € C3
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|w) == exp (Z /d3k {w(k) -ex(k)ay (k) — h.c.}) |0),
A=+
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_eg(k) Voo
V20k|321 - k- veo

= w(k) =
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For which w € C3

lim |k[(w|E(k, t)|w) = lim |k|Ecy(k t)  fort>0
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|w) == exp (Z /d3k {w(k) -ex(k)ay (k) — h.c.}) |0),
A=+
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A=+

_eg(k) Voo
V20k|321 - k- veo

¢ L2

= w(k) =
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For which w € C3

lim |k[(w|E(k, t)|w) = lim |k|Ecy(k t)  fort>0
k—0 |k|—0

where

) = exp<2 / d3’<{W(k)-eA(k)aX(k)—h-c-}> o) ¢ F(L?),
A==

E(k,t) =Y |2k‘(isA(k)e—"klfaM)_ng(_k)efkfa;(_k)) ?
A=+

ed(k) Voo
V20k|321 - k- veo

¢ L2

= w(k) =—
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For which w € C3

lim |k[(w|E(k, t)|w) = lim |k|Ecy(k t)  fort>0
k—0 |k|—0

where

) = exp<2 / d3’<{W(k)-eA(k)aX(k)—h-c-}> o) ¢ F(L?),
A==

E(k,t) =Y |2k‘(isA(k)e—"klfaM)_ng(_k)efkfa;(_k)) ?
A=+

_ e@(k) Voo g L2
N PEE

"'scattered states escape from Fock space"

= w(k) =
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We showed
0 F(k) = limjx|—0 |k|F(k, t) defines a conserved quantity,

@ the soft-photon theorem of the form
Focer (k) = Foe— (k) = — (.7-"V+oo(k) — }"V_w(k)).
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We showed
0 F(k) = limjx|—0 |k|F(k, t) defines a conserved quantity,

@ the soft-photon theorem of the form
Focer (k) = Foe— (k) = — (.7-"V+oo(k) — }"V_w(k)).

W. Dybalski; D.V.H.: A soft-photon theorem for the
Maxwell-Lorentz system. In: Journal of Mathematical Physics 60
(2019), oct., Nr. 10, p. 102903. — DOI 10.1063/1.5123592
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