Towards a manifestly supersymmetric formulation of loop quantum supergravity theories

Konstantin Eder

FAU Erlangen-Nürnberg

June 19, 2020

Section 1

Introduction: SUSY and LQG

Konstantin Eder

Coleman-Mandula-Theorem (CM)

In the presence of a $mass\ gap,$ the only possible (Lie) algebra of symmetries of the S-matrix for an interacting QFT is given by

 $\mathfrak{iso}(\mathbb{R}^{1,3}) \oplus \mathfrak{internal}$ sym.

Haag-Łopuszański-Sohnius theorem

(CM) does not apply in case of $super \ Lie \ algebras,$ i.e. $\mathbb{Z}_2\text{-graded}$ algebras $(\mathfrak{g},[\cdot,\cdot])$ of the form

 $\mathfrak{g} = \mathfrak{g}_0 \oplus \mathfrak{g}_1$ with $[\cdot, \cdot]$: (anti) commutator on \mathfrak{g}_0 (\mathfrak{g}_1)

such that $[\mathfrak{g}_i,\mathfrak{g}_j]\subseteq\mathfrak{g}_{i+j}$ (+ graded Jacobi identity)

 \Rightarrow smallest possible super Lie algebra of symmetries is given by the

super Poincaré algebra ($\mathcal{N}=1$ SUSY-algebra)

$$\mathfrak{iso}(\mathbb{R}^{1,3|4}) = \underbrace{\mathbb{R}^{1,3}\ltimes\mathfrak{so}(1,3)}_{\mathfrak{g}_0} \oplus \underbrace{\mathcal{S}_{\mathbb{R}}}_{\mathfrak{g}_1}$$

generators: P_I , M_{IJ} , $Q^{\alpha} = (Q^A, Q_{A'})^T$ (Majorana spinor)

$$[P_{I}, \overline{Q}_{\alpha}] = 0 - \frac{1}{4L} \overline{Q}_{\beta} (\gamma_{I})^{\beta}{}_{\alpha}$$
$$[M_{IJ}, \overline{Q}_{\alpha}] = \frac{1}{2} \overline{Q}_{\beta} (\gamma_{IJ})^{\beta}{}_{\alpha}$$
$$[\overline{Q}_{\alpha}, \overline{Q}_{\beta}] = \frac{1}{2} (C\gamma_{I})_{\alpha\beta} P^{I} + \frac{1}{8L} (C\gamma^{IJ})_{\alpha\beta} M_{IJ}$$

 $AdS_4 := \{x \in \mathbb{R}^5 | - (x^0)^2 + (x^1)^2 + \ldots + (x^3)^2 - (x^4)^2 = -L^2\}$

LQG

- **nonperturbative** and **manifestly background independent** quantum theory of gravity
- starting point: reformulation of GR in terms of **Ashtekar-Barbero** variables
- gives canonical GR the structure of a SU(2) Yang-Mills theory
- Hilbert space: projective limit of L²-functions on group-valued holonomies (parallel transport map) along one-dimensional paths
- Peter-Weyl theory \Rightarrow basis: **spin networks** (\rightarrow string-like excitations of the gravitational field)

SUSY and LQG:

- SUGRA in Ashtekar variables? [Füllöp, Jacobson, Pullin et al]
- Quantization [Smolin, Bodendorfer et al]

But:

- Canonical treatment of SUGRA theories generically suffer from complicated constraints
- SUSY hidden in the formalism \rightarrow keep SUSY manifest (at least partially)?
- role of the Barbero-Immirzi parameter?

What is needed for LQSG:

- super Cartan geometry
- super analog of Ashtekar's connection
- anticommuting classical fermions
- super holonomies
- generalization of Peter-Weyl theory to super Lie groups

Section 2

Supermanifolds and super Lie groups

Konstantin Eder

Various different approaches:

- Berezin-Kostant-Leites(algebro-geometric): "Definition like in NC geometry". But: what are the points?
- **Rogers-DeWitt**(concrete): "Start with topological space of points". But: Too many points, ambiguities"
- **Molotkov** '84 and **Sachse** '08(categorial): Shows BKL and RdW are two sides of the same coin.

algebro-geom.: Observation: Structure of a smooth manifold M completely encoded in a suitable ring of functions on it \rightarrow describe M as locally ringed space $(|M|, \mathcal{O}_M)$ s.t.

- |M| paracompact topological Hausdorff space
- \mathcal{O}_M abstract sheaf of local rings on |M|
- *M* is locally Euclidean $(\mathbb{R}^n, C^{\infty}_{\mathbb{R}^n})$

Definition Supermanifold

Supermanifold \mathcal{M} is a locally ringed space $(\mathcal{M}, \mathcal{O}_{\mathcal{M}})$ s.t.

- M paracompact topological Hausdorff space
- $\mathcal{O}_{\mathcal{M}}$ abstract sheaf of local super rings on M
- \mathcal{M} locally looks like flat superspace $\mathbb{R}^{m|n} = (\mathbb{R}^m, C^{\infty}_{\mathbb{R}^m} \otimes \bigwedge \mathbb{R}^n)$
- $\bullet\, \rightarrow$ locally, functions of the form:

$$f(x,\theta) = f_0(x) + f_i(x)\theta^i + \ldots + f_n(x)\theta^1 \cdots \theta^n$$

- $\mathcal{J} := \mathcal{O}_1 + \langle \mathcal{O}_1 \rangle^2$ (nilpotent sub ideal) $\rightarrow (M, \mathcal{O}_M / \mathcal{J})$ ordinary manifold (body)
- super Lie groups as group objects in this category SMan.

Supermanifold $\mathcal M$ yields functor of points $\mathcal M:\,\textbf{SMan}^{\mathrm{op}}\to\textbf{Set}$

$$\begin{split} \mathcal{T} &\mapsto \mathcal{M}(\mathcal{T}) := \operatorname{Hom}_{\mathsf{SMan}}(\mathcal{T}, \mathcal{M}) \quad (\mathcal{T}\text{-point}) \\ (f: \ \mathcal{T} \to \mathcal{S}) &\mapsto (\mathcal{M}(f): \ g \mapsto g \circ f) \end{split}$$

• restrict on superpoints $\mathcal{T} \cong (\{*\}, \Lambda) (\rightarrow \text{Grassmann algebras})$

$$\mathcal{M}(\Lambda) \cong \operatorname{Hom}_{\mathsf{SAlg}}(\mathcal{O}(\mathcal{M}), \Lambda)$$

- contains real spectrum $\operatorname{Spec}_{\mathbb{R}}(\mathcal{O}(\mathcal{M})) = \operatorname{Hom}_{\mathsf{SAlg}}(\mathcal{O}(\mathcal{M}),\mathbb{R})$
- topological space via Zariski or Gelfand topology
- equip $\mathcal{M}(\Lambda)$ with coarsest topology s.t. $\mathcal{M}(\Lambda) \to \operatorname{Spec}_{\mathbb{R}}(\mathcal{O}(\mathcal{M}))$ is continuous \to **DeWitt-topology**

- $\mathcal{M}(\Lambda_N)$ structure of topological manifold $\rightarrow Rogers$ -DeWitt supermanifold
- \Rightarrow yields functor

$$\mathbf{Gr} \to \mathbf{Man}, \Lambda \mapsto \mathcal{M}(\Lambda)$$

- $\bullet \rightarrow$ Supermanifold in the sense of Molotkov and Sachse
- starting point for the construction of **infinite-dimensional supermanifolds** requiring $\mathcal{M}(\Lambda)$ to be a Banach [M '84, S '08] or Fréchet supermanifold [Schütt '19]
- $\bullet \rightarrow$ groups of super diffeomorphisms and supersymmetry transformations

Section 3

Gravity as Cartan geometry

Konstantin Eder

F. Klein: "Classify geometry of space via group symmetries".

Example: Minkowski spacetime $\mathbb{M} = (\mathbb{R}^{1,3}, \eta)$

- isometry group $\mathrm{ISO}(\mathbb{R}^{1,3}) = \mathbb{R}^{1,3} \ltimes \mathrm{SO}_0(1,3)$
- event $p \in \mathbb{M}$: $G_p = SO_0(1,3)$ (isotropy subgroup)

 $\mathrm{ISO}(\mathbb{R}^{1,3})/\mathrm{SO}_0(1,3)\cong\mathbb{M}$

Definition

A Klein geometry is a pair (G, H) where G is a Lie group and $H \subseteq G$ a closed subgroup such that G/H is connected.

Cartan geometry

- flat spacetime \leftrightarrow metric Klein geometry
- $\bullet \Rightarrow$ Cartan geometry as deformed Klein geometry

metric Cartan geometry

A metric Cartan geometry modeled on a metric Klein geometry (G, H) is a principal *H*-bundle

together with a **Cartan connection** $A \in \Omega^1(P, \mathfrak{g})$ s.t.

•
$$r_g^* A = \operatorname{Ad}(g^{-1})A \ \forall g \in H$$

• $A(\widetilde{X}) = X, \ \forall X \in \mathfrak{h} \ \left(\widetilde{X} := (\mathbb{1} \otimes X_e) \circ r^*\right)$
• $A: \ T_p P \to \mathfrak{g} \text{ is an isomorphism } \forall p \in P$

without (III): generalized Cartan geometry

Cartan geometry

• Gravity as metric Cartan geometry $(M \stackrel{\pi}{\leftarrow} P, A)$ modeled on $(\mathrm{ISO}(\mathbb{R}^{1,3}), \mathrm{SO}_0(1,3))$

Decomposition

$$A = \operatorname{pr}_{\mathbb{R}^{1,3}} \circ A + \operatorname{pr}_{\mathfrak{so}(1,3)} \circ A =: \xi + \omega$$

• ω Lorentz-connection

• $\xi \in \Omega^1_{\mathrm{hor}}(\mathsf{P},\mathbb{R}^{1,3})$ soldering form, induces isomorphism

$$\Xi: P \times_{(H, \mathrm{Ad})} \mathbb{R}^{1,3} \cong TM \Rightarrow \text{ metric } g := \eta \circ (\Xi^{-1} \times \Xi^{-1}) \text{ on } M$$

Action

$$S[A] = \int_M s^* (R[A]^{IJ} \wedge \xi^K \wedge \xi^L) \epsilon_{IJKL}$$

 $s^*\xi =: e^I P_I \Rightarrow \{e^I\}$ coframe

Section 4

Supergravity

Konstantin Eder

 Supergravity as super Cartan geometry modeled on super Klein geometry (ISO(ℝ^{1,3|4}), Spin(1,3)) [D'Auria-Fré-Regge '80, D'Auria-Fré '80, Castellani-D'Auria-Fré '91]

$$\begin{array}{c|c} \mathcal{P} & \longrightarrow & \operatorname{Spin}(1,3) \\ \pi \\ \downarrow \\ \mathcal{M} \end{array}$$

- super Cartan connection $\mathcal{A} \in \Omega^1(\mathcal{P},\mathfrak{iso}(\mathbb{R}^{1,3|4}))$
- Decompose

$$\mathcal{A} = \underbrace{\mathrm{pr}_{\mathfrak{g}_1} \circ \mathcal{A}}_{\psi} + \underbrace{\mathrm{pr}_{\mathbb{R}^{1,3}} \circ \mathcal{A}}_{\xi} + \underbrace{\mathrm{pr}_{\mathfrak{spin}(1,3)} \circ \mathcal{A}}_{\omega}$$

• $\psi = \psi^{lpha} \overline{Q}_{lpha}$ (spin-3/2) Rarita-Schwinger field

SUGRA action (D = 4, $\mathcal{N} = 1$)

$$S[\mathcal{A}] = \int_{\mathcal{M}} s^* \langle R[\mathcal{A}] \wedge \sigma \wedge \sigma \rangle = S_{\mathcal{P}}[e, \omega] + \int_{\mathcal{M}} \frac{i}{2} \epsilon^{\mu\nu\rho\sigma} \bar{\psi}_{\mu} \gamma_{\sigma} \gamma_* \mathcal{D}_{\nu}^{\omega} \psi_{\rho}$$

•
$$R[\mathcal{A}] := \mathrm{d}\mathcal{A} + \frac{1}{2}[\mathcal{A} \wedge \mathcal{A}]_{\mathfrak{g}}$$

- $\sigma := \psi + \xi \in \Omega^1(\mathcal{P}, \mathfrak{t}^{1,3|4})$ super soldering form (super vielbein)
- $s: \ U \subset \mathcal{M}
 ightarrow \mathcal{P}$ local section

Section 5

Application for loop quantum supergravity

Konstantin Eder

Super Ashtekar connection

• self-dual Ashtekar connection:

$$A^{+IJ} = \frac{1}{2} \left(\omega^{IJ} - \frac{i}{2} \epsilon^{IJ}{}_{KL} \omega^{KL} \right) = (\Gamma^{i} - i\widetilde{K}^{i}) T_{i}^{+IJ}$$

•
$$T_i^{\pm}=rac{1}{2}(J_i\pm iK_i),\ J_i=-rac{1}{2}\epsilon_i^{\ jk}M_{jk}$$
 , $K_i=M_{0i}$

Proposition: (T_i^+, \overline{Q}_A) generate sub super Lie algebra

$$[T_i^+, T_j^+] = \epsilon_{ij}{}^k T_k^+$$
$$[T_i^+, \overline{Q}_A] = -\frac{i}{2} \overline{Q}_B(\sigma_i){}^B_A$$
$$[\overline{Q}_A, \overline{Q}_B] = 0 + \frac{1}{2L} (\epsilon \sigma^i)_{AB} T_i^-$$

generate generalized Takiff Lie superalgebra $\mathfrak{sl}(2,\mathbb{C}) \rtimes \mathbb{C}^2$ (orthosymplectic Lie superalgebra $\mathfrak{osp}(1|2)_{\mathbb{C}}$)

Definition

$$\mathcal{A}^+ := \psi^A \overline{Q}_A + A^{+i} T_i^+$$

$$\Rightarrow$$
 Defines 1-form $\mathcal{A}^+ \in \Omega^1(\mathcal{P}, \mathfrak{osp}(1|2)_{\mathbb{C}})$

Properties

•
$$r_g^*\mathcal{A}^+ = \operatorname{Ad}(g^{-1})\mathcal{A}^+$$
, $\forall g \in \operatorname{SL}(2,\mathbb{C})$

•
$$\mathcal{A}^+(\widetilde{X})=X$$
, $orall X\in\mathfrak{sl}(2,\mathbb{C})$

Condition (III) not satisfied \Rightarrow generalized super Cartan connection.

Proposition: [KE '20]

Consider associated $\mathrm{OSp}(1|2)_{\mathbb{C}}$ -principal bundle

$$\begin{array}{c} \mathcal{P} \times_{\mathrm{SL}(2,\mathbb{C})} \mathrm{OSp}(1|2)_{\mathbb{C}} \longleftarrow \mathrm{OSp}(1|2)_{\mathbb{C}} \\ & \pi \Big| \\ & \mathcal{M} \end{array}$$

lift of \mathcal{A}^+ gives principal connection $\rightarrow \textbf{super Ashtekar connection}$

- \bullet even exists for $\mathcal{N}>1$ (extended SUSY)
- what about real β?
 - \Rightarrow both chiral components of \overline{Q} in \mathcal{A}^{eta}
 - But: $[\overline{Q}_A, \overline{Q}^{A'}] \propto P \rightarrow$ no proper sub super algebra! \rightarrow no super holonomies!

- $\bullet \ \mathcal{A}^+$ is the right starting point for LQSG
- fundamental description via super Cartan geometry
- $\bullet\,\,\rightarrow\,$ resolves confusions in literature:
 - existence with and without cosmological constant
 - requires chiral description of SUGRA (no real β)
- $\bullet\,$ contains both gravity and matter d.o.f. $\to\,$ unified description, more fundamental way of quantizing fermions
- \rightarrow can give **hint** how to quantize fermions in spin foam approach [Livine+Oeckl '03]
- substantially simplifies constraints (canonical form of Einstein equations): partial solution via gauge invariance[Fülöp '93, Ling+Smolin '00, Tsuda '00, Livine+Oeckl '03, KE+Sahlmann '20]

Quantum theory

What do we need for quantum theory?

- holonomies (parallel transport map)
- Hilbert spaces
- spin network basis

Holonomies[KE '20 (in prep.)]:

- general problem: pullback of superfields to the body of a supermanifolds $\mathcal M$ are purely bosonic \to no fermionic degrees of freedom on the underlying spacetime manifold!
- Resolution: Consider **enriched** category of supermanifolds [Schmitt '96, Deligne '99, Sachse '09, Groeger '14, Hack-Hanisch-Schenkel '15]
- Choose parametrizing supermanifold S and consider *S*-relative supermanifold $M/S := (S \times M, pr_S)$
- Have to require that physical quantities behave natural under change of parametrization $\lambda:\,\mathcal{S}\to\mathcal{S}'$

Holonomies

- $\bullet \to \mathsf{Consider}$ super connection 1-form $\mathcal A$ on $\mathcal S\text{-relative principal super}$ fiber bundles
- yields parallel transport map along $\gamma:\,\mathcal{S} imes[0,1] o\mathcal{M}$

$$\mathscr{P}_{\mathcal{S},\gamma}^{\mathcal{A}}: \, \Gamma(\gamma_{0}^{*}\mathcal{P}) \to \Gamma(\gamma_{1}^{*}\mathcal{P})$$

• natural under reparametrization: $\lambda^* \circ \mathscr{P}^{\mathcal{A}}_{\mathcal{S}',\gamma} = \mathscr{P}^{\lambda^*\mathcal{A}}_{\mathcal{S},\lambda^*\gamma} \circ \lambda^*$

Super Wilson loop observable

$$W_{\gamma}[\mathcal{A}] = \operatorname{str}\left(g_{\gamma}[\omega] \cdot \mathcal{P} \operatorname{exp}\left(-\oint_{\gamma} \operatorname{Ad}_{g_{\gamma}[\omega]^{-1}}\psi^{(\tilde{\mathfrak{s}})}\right)\right) : \ \mathcal{S} \to \mathcal{G}$$

- $\mathcal{A} = \omega + \psi$ and γ : $[0,1] \rightarrow \mathcal{M} \subset \mathcal{M}$
- $g_{\gamma}[\omega]$: parallel transport map associated to ω

Proposition

- $W_{\gamma}[\mathcal{A}]: \mathcal{S} \to \mathcal{G}$ element in $\mathcal{G}(\mathcal{S})$ (\mathcal{S} -point of \mathcal{G})
- natural under reparametrization $\lambda^* W_{\gamma}[\mathcal{A}] = W_{\gamma}[\lambda^* \mathcal{A}]$
- fermionic component ψ ∈ Ω¹(M, E) ⊗ O(S)₁ describes odd functional on supermanifold S
- \bullet choice of $\mathcal{S} {:}\ \mathcal{S}$ object in $\textbf{SPt}^{\mathrm{op}} \cong \textbf{Gr}$
 - $W_{\gamma}[\mathcal{A}] \in \mathcal{G}(\Lambda)$ (group element in Rogers-DeWitt supermanifold)
 - Λ_{∞} universal property: $\exists \lambda_N : \Lambda_N \hookrightarrow \Lambda_{\infty} \ \forall N \in \mathbb{N}_0$
- Alternatively: S as configuration space (infinite-dimensional smf!)

$$\mathcal{S} = \Omega^1(M, \mathrm{Ad}(P)) \oplus \Omega^1(M, E)$$

• $\Rightarrow \psi$ describes odd functional on configuration space[Schmitt '96, Rejzner '10]

Super Peter Weyl:

• use that super Lie groups have relatively simple structure, i.e. $\mathcal{O}_{\mathcal{G}} \cong C^{\infty}(\mathcal{G}) \otimes \bigwedge \mathfrak{g}_{1}^{*} \Rightarrow$ invariant integrals of the form

$$\int_{\mathcal{G}} f = \int_{\mathcal{G}} \mathrm{d}\mu_H \int_{B} \mathrm{d}\theta f(\theta)$$

- \Rightarrow ($\mathcal{O}_{\mathcal{G}}, \langle \cdot, \cdot \rangle$) structure of Krein space
- for $\mathrm{U}(1|1)$ and $\mathrm{SU}(1|1)$ $(\mathfrak{u}(1|1)_0=\mathfrak{u}(1)\oplus\mathfrak{u}(1))$ [KE '20 (in prep.)]

$$\overline{\mathcal{O}_{\mathcal{G}}}^{\|\cdot\|} \cong \bigoplus_{(m,n)\in\mathbb{Z}^2} \pi_{(m,n)}$$

Section 6

Summary

Konstantin Eder

- Considered supergravity as super Cartan geometry
- found that chiral generators (*T*⁺_i, *Q*_A) generate sub super Lie algebra sl(2, C) ⋊ C² (or osp(1|2)_C) of super Poincaré algebra
- gives rise to super Ashtekar connection \mathcal{A}^+ as generalized super Cartan connection (even for extended SUSY)
- A⁺ can be lifted to a super principal connection (à la Ehresmann) on associated principal super fiber bundle → super holonomies
- requires chiral description (no real β)
- considered parallel transport of super connection on parametrized supermanifolds

Summary

- yields description of fermionic component of super connection as functional on supermanifold ↔ description of fermions in pAQFT[Schmitt '96, Rejzner '10]
- $\bullet\,\Rightarrow$ in LQG: holonomies encode both matter and gravity d.o.f.
- Fermions: 1(+1) dimensional quantum excitations (as gravity).
- Construction of Hilbert space \to derived super Peter Weyl theory for ${\rm SU}(1|1)$ and ${\rm U}(1|1).$

Outlook

- non-manifestly supersymmetric approach to SUGRA:
 - Quantization of the SUSY-constraint *S* (without *K*-term!) [KE+Sahlmann '20 (in prep.)]
 - since $\{S, S\} \propto H \Rightarrow$ consistency condition for Hamilton constraint
 - solutions of *S* turn out to be really supersymmetric (**need** to contain both boson+fermion)
 - SUSY cosmology