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Introduction



What to expect?

Main issue: the classification of gapped ground states:
e \We will always work in the thermodynamic limit

e Gapped ground states of local Hamiltonians...
e _with some equivalence relation

e fFocus on states with topological order (or long-range
entanglement)

e Non-invertible states

Question
Can we find (physically interesting) invariants?




Why are these states interesting?

e Can host anyons: quasi-particles/superselection
sectors/charges/.. with braided statistics

e Algebraic properties of anyons are described by braided
tensor C*-categories (typically even modular or braided
fusion)

e ‘Topological nature makes these properties robust
e |n other words, the category should be an invariant

How can we obtain the category of anyons from a microscopic
description of the state? (And is this indeed an invariant?)




What not to expect?

Not a historical overview

Only non-chiral topological order

Will focus on basics, not most general statements

Only discuss the operator-algebraic “DHR approach” to
superselection sectors

Will gloss over more technical details



Plan for the week

e | ecturel: The toric code and its ground states
e | ecture 2&3: The category of superselection sectors

e | ecture 4: Classification of phases and long-range
entanglement

We illustrate the theory by the example of the toric code, but
methods work much more generall



Some history

Approach is rooted in Doplicher-Haag-Roberts theory:!

e Originates in algebraic quantum field theory, defined in
terms of Haag-Kastler nets of observables & +— (&)

e DHR theory attempts to capture ‘charges’ and leads to
Bose/Fermi (para-)statistics in (3+1)D

e Culminates in Doplicher-Roberts theorem: a STC*-category
is equivalent to Rep G for some compact group G

e [nlower dimensions, can get braided statistics (anyonsl)

e Similar techniques have been very successful in CFT
(conformal nets)

"Haag, Local Quantum Physics, Springer (1992)



Different approaches

The main feature of the approach is the appearance of a braiding
(describing anyon exchange).

Question
How does this braiding appear?

e ‘Classical DHR approach’: these lectures
(See also Ogata, arXiv:2106.15741)

e Prefactorisation algebras (geometric approach)
(Benini, Carmona, PN, Schenkel, arXiv:i2505.07960)
— talk Alexander Schenkel next week

e Axiomatic approach: nets on certain posets
(Bhardwaj, Brisky, Chuah, Kawagoe, Keslin, Penneys, Wallick:
arXivi2410.21454)



The toric code



The toric code
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The toric code




Pauli matrices

Recall the definition of the Pauli matrices:

(01 v (0 i (L0
“\1 0 “\i 0 A0 —1
They have nice algebraic properties: {o%, 07} = 2§; ;I
e Square to the identity

e Different Pauli matrices anti-commute

e Jogether with I form a basis of M»(C).



Stars and plaquettes




Dynamics

We define star and plaquette operators:

145::(25)0?, B, = Cgbtff.

jEs J€ED

Some easy properties: A2 = Bg = I, and all commute.
Can use this to define the dynamics:

Hy=) (I-A)+) (I-B,))

sCA pCA

Note that the dynamics are very simple (“commuting projector”)!



Frustration-free ground state

Lemma

Let X; < I be a set of operators and suppose that there is a
unique state w such that w(X;) = 1 for all X;. Thenw is pure.

Proof.

Let ¢ be a positive linear functional such that ¢ < w. Since
I — X; >0, we have

0<¢(I-X;) <w( —X;)=0.

Hence ¢(X;) = ¢(I). From the uniqueness assumption,
¢ = ¢(Iw, and it follows that w is pure. O

Lemma
Let X <Twithw(X) =1 Thenw(A) =w(AX) = w(XA).



Frustration-free ground state

Theorem

The toric code has a unique frustration free ground state wg. This
State is pure.

Proof.

One can show (exercisel) that there is a state such that

wo(As) = wo(Bp) = 1 for all star and plaquette operators, and
these conditions uniquely determine it. Hence wyg is pure. Note
thatwo(d — As) = wo({ — Bp) = 0. For A € Ay, We have

—iwg(A*6(A)) =) wo(A*AA,) — wo(A*A,A) + B, terms
= ZWO(A*(I — A,;)A) + B, terms

>0 Ol



An aside...

When defined on a non-trivial topology (e.g. a torus), the
condition w(As) = w(Byp) = 1 fixes the state locally but not

globally. In fact, the ground state space is a quantum error
correction codel

Ground space degeneracy is given by 49



GNS representation

We will use wq throughout as a reference state.
e GNS representation (o, 2, Ho)
- o : A — B(Ho) *-representation

- mo(R)Q densein Hy
- wo(A) = (Q,m0(A) )2,
Will often identify mo(A) with A

We have A,Q = ByQ = Q (stabiliser condition):
~ HyQQ =0forall A

Hamiltonian in GNS representation with HQ =0, H >0
satisfies spec(H) N (0,2) = 0 (spectral gap)

State satisfies LTQO conditions: spectral gap is stablel



Excitations



Path operators

We can consider paths € and dual paths 2

& [

L))




Path operators

And corresponding operators F¢ and Fg:
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Path operators

The edges on which the path operators act always have an even
number in common with star and plaguette operators and hence

[Fe, As] = [Fe, Bp| = [Fg, As] = [F, Byl = 0

except at the endpoints of the path! Path operators F
anti-commute with star operators at endpoint, whilst the Fg
anti-commute with the plaguette operators.

Excitations

The path operators create a pair of electric or magnetic
excitations respectively.

We have
HAFeQ = 2#(96 N A) FeQ, H\FQ = 2#(06 N A) F02

where #(0£ N A) is the number of endpoints of £ within A



Path operators

.........,
Iy '
1




Single excitations

The state F¢Q describes a pair of anyons/excitations.
Alternatively, in the Heisenberg picture,

pé (@) = Fealy = (Ad Fe)(a)

is an automorphism of 2 that describes how observables change
in the presence of the two excitations.

Question
Can we describe a single excitation?

Answer

Yes! We work on an infinite lattice, so can send one of the
excitations to infinity:

pg(a) = lim Fg aFg,

n—oo

where &, are the first n parts of a semi-infinite ribbon &.



Cones




Localised automorphisms

e Canchoose acone A as in the picture...
e _ andasemi-infinite path & C A.

e \We get a corresponding automorphism pg.

e Thisislocalised in A: pf(a) =aforalla € A(A°).

Notation

We can do something similar for dual paths to get pg( or for the
combination of a path and dual path, to get p%/. We will use the
notation £ for all types of paths, with notation p’g fork=X,Y,Z.
By definition, pg =id.



Single anyon states

The states wy o p¥ describe single anyon states (trivial, electric,
magnetic, and “combined” state)!

These have a topological property, in the sense that the
“direction” of the string is invisible:

So we have
(.do(FgaFg) = wO(BngaFng) = wO(FglaFg‘,)

We may write wy o p® where z is the endpoint of the path. Note
that the automorphism p* do depend on ¢!



Equivalence of states on 2

Definition
Let wy,wy be two pure states. Then we say they are equivalent if
the corresponding GNS representations are unitarily equivalent.

Lemma

Two pure states wy and wq on the quasi-local algebra A are
equivalent it and only if for every e > 0, there is some finite set A
such that for every local observable A localised outside A we
have

wi(A4) — w2(A4)] < €| Al.

Pure states are inequivalent if they can be distinguished ‘at
infinity’l



Inequivalence of states

Lemma

The states wg o pF and wg o p]?jl are inequivalent ifk # k'.

Proof.

We can move the excitations over a finite distance using local
unitaries, so wlog we may assume x = y. Consider a closed loop
& Then one sees that

Fe = H B,,

pCint(&)

and something similar for closed dual loops.

Since the ribbon operators commute with any As and B,, (apart
from possibly at the end-point, where they may anti-commute), it
follows that p¥(F¢) = £F;, and wg o p¥(F) = £1.



Inequivalence of states

Lemma

The states wg o pk and wg o p’;' are inequivalent if k # k.

(.. cont) Theresultis —1 only if € circles around z,and k # 0 and £
is of a different typel Since for any finite set A, we can choose a
loop surrounding A and the endpoint of the semi-infinite ribbon,
we can always find an operator X € A(A€) with ||X || = 1 such that

/

lwo © p(X) —wo 0 py (X)| =2.

Since both states are pure, the result follows. O
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The story so far...

We have considered the toric code on the Z2-lattice and
constructed:

e A pure frustration-free ground state wy

e Automorphisms p* describing single anyons (electric,
magnetic and electromagnetic)

e This gives four equivalence classes of irreducible
representations

Questions
e How do we know how to choose which representations?

e Does this set of representations have more structure?



The superselection criterion



Superselection rules

Consider representation m : 2 — B(H) with 11, ¢ € H unit
vectors. Let ¢y = %L\/;W and define the state

wo(A) = (Yo, T(A)tg).
The (state) vectors 1, 1 satisfy a superselection rulel if the

expectation values are independent of the relative phase! (This
can only happen if 7 is not irreduciblel)

Definition

Two states wy,ws are called not superposable if in any
representation & that contains vectors 1, ¥y implementing the
states, we have that

Wy +Aus (A) = |aPwy, (A) + |BlPwy, (4) = |al’wi(A) + |B2wa(A)

foralla, 8 € Cwith|a|? + |82 = 1.
'Wick, Wightman and Wigner, Physical Review, 88:101-105, 1952




Superposable irreducible
representations

Theorem

Let wi,ws be pure states of A. Then they are superposable iff
their GNS representations =, and «,,, are unitarily equivalent.

e Fquivalent representations have the same (normal) states

e Can think of different equivalence classes as describing
different ‘charges’

e [otal charge cannot be changed with (quasi-)local operatorsl!

e The vectorsin the representation can describe many
excitations (but all have the same 'total charge’)

Problem
There are many ‘unphysical’ irreps of 2!




GNS representations for anyon
states

Recall that (o, 2, Ho) is the GNS representation of the
frustration free ground states. Since the maps p* are
automorphisms of 2, m o p¥ is again a representation. Moreover,
Qs cyclic for this representation. We have

(2, 7m0 0 pli(a)Q2) = wo(pli(a)).

Now let p, and p!, be two such automorphisms defined in terms
of semi-infinite ribbons £ and & with the same endpoint. Then
wp © pr = wp © pl, SO by uniqueness of the GNS representation
there must be a unitary Ve B(H,) such that

Vo o pe(a) =m0 pl(a)V.

These are called charge transporters.



The superselection criterion

Definition (Superselection criterion)

Let mo be anirreducible “reference” representation of 2. Then «
satisfies the superseleciton criterion if

7 [ A(AC) = mo [ A(A)
for all cones A.

e |nterpretationis that of localisable and transportable
representations.

e Anequivalence class is called a (superselection) sector

e A general C*-algebra has many inequivalent
representations, but for a given m, not many sectorsl!

e Choice of cone depends on class of models to study.



Sectors of the toric code

Theorem
There are (at least) four irreducible sectors for the toric code.

Proof.

Fix a cone A. Choose a semi-infinite path &, foreach k = X,Y, Z
inside the cone. Then my o p’gk (a) = mo(a) foralla € A(A). Let A
be a different cone, and choose paths &, C A’ as above. Then by
independence of the state wg o plgk on the path (plus moving a
charge over a finite distance), it follows that 7 o p’gk > 1 0 pif;c.
Moreover, from the previous results the four representations

o © plgk are all inequivalent, and hence in distinct sectors. O

Remark

It turns out these are all irreducible sectors, but we will come
back to this later.




What’s next

We considered the toric code on the Z2 lattice:
e Constructed four types of automorphisms p’;‘ k=0,X,Y,2)

e The representations satisfy the superselection criterion:
mo 0 pf [ A(A®) = 71y | A(AS)
forall cones A

e Representations have the interpretation of describing an
anyon

e Anyons are localizable and transportable

We can define extra structure on this set of representations,
such as fusion and braiding!



Monoidal/tensor categories

Definition
A monoidal category is a category C with a bifunctor

® : C x C — C together with a distinguished object 1¢ € C and the
following families of natural isomorphisms:

1. AsSOCIators agpe: (a®b) @ c — a® (b ®c)

2. UnitOrS)\a:lc®ai>aandpa:a®lci>a

foralla,b, c € C. These should satisfy the pentagon and triangle
axioms.

Definition
IT the associators and unitors are the identity, we say that C is a
strict monoidal category.



Pentagon axiom

Aa®b,c,d

(a@b)®@c)@d (a®b) @ (c®d)

Ofa,b,c@iddj/ laa,b,c@)d

(a®(b®c)®d a®(b® (c®d)

aa,b@c,d\,\ /ida ®p,c,d

a® ((b®c)®d)




Triangle axiom

a®1c 1c®b

Xa,1p,c

paM ﬁ@)\b




A warm-up

Example

Let 21 be a unital C*-algebra. Then we can define the category
End(2) of unital *-endomorphisms of &, with the following
morphisms:

Home,e (p,0) == {T € A : Tp(a) = 0(a)T Va € A},

with composition the composition of morphisms.
This has a ®-product, defined objectsas p® o := poo. If
S € Hom(py, p2) and T' € Hom(o1, 02), define

ST = Spl(T) S Hom(p1 R 0o1,p2 X 0'2).

This makes End(2l) into a strict monoidal category. (Exercisel)



Charge transporters



The category Apur

Motivated by the example End(2(), we define:

Definition (DHR category, first attempt)

Given a representation g, the category Apgr has as objects
endomorphisms p of 2l which are

e |ocalised, ie. there is some cone A such that p(a) = a for all
a € A(A°);

e transportable, i.e. for any other cone A/, there is a p’ localised
in A" and a unitary v € B(H,) such that

vmo(p(a)) = mo(p'(a))v.
The morphisms are the intertwiners, i.e.

(p,0) :={s € B(Hy) : smoo p(a) =mgoo(a)s Vae A}

Note: we have v € (p, p’) for the charge transporters.



Some remarks on Apgr

e The automorphisms pf defined earlier are in Apur

e Conversely, if p € Apgr, 7o o p Satisfies the superselection
criterion

e The category depends on the choice of ng via the
transportability condition!

e Thisis not a subcategory of End(2() since the morphisms
(charge transporters) in Apgr Need not be in 7p(2A)

e |n particular, monoidal product will be more complicated



Charge transporters

We can explicitly construct charge transporters v:

e Consider semi-finite ribbons &, ¢ ¢ A with the same
endpoint x and look at the corresponding automorphisms p
and p’

e Write &, (£ for the first n edges on the path.
e For each n, choose path En connecting ends of &, and &/, ...
e ..such that dist(¢,, z) — oo

* Definew, := Fg,. Thenlim, o vyp(a) — p'(a)v, = 0 for all
a €A

e [nterpretation: v, MOves back the excitation along &, then go
back along ¢ via &,



Charge transporters




Charge transporters




Interlude: von Neumann algebras

Definition
Let H be a Hilbert space and M C B(H) be a unital x-subalgebra.
Then M is called a von Neumann algebra if M = M”.

Theorem (Bicommutant theorem)
The following are equivalent:
1. M s avon Neumann algebra

2. M is closed in the weak operator topology:
T\ — WOt & (¢, (z\ — x)p) — 0forall g,y € H.

3. M s closed in the strong operator topology:
x\ — SOt & ||(zx — x)y|| — 0 forally € H.



Charge transporters

Warning
The sequence v,, does not converge (in norm) to an element in A
in general.

However, 7y (v, ) does converge (to a unitary) in the strong
operator topology.

Proof (sketch).
It is enough to show that v,af? is a Cauchy sequence for a € Ajge.
Note that for n large enough, supp a N supp(vy,,) Will be constant.
For such n, decompose v,, as product of three path operators,
such that the middle part has empty intersection with the
support of a. Using that F¢ only depends on the endpoints of &,
it follows that for each a € o, TOr n > k with k large enough,

vnaQ = nganFg;caQ = ngngaanQ []



Charge transporters

Let A be a cone containing the localisation regions of p and p:
e [t follows that v € mo(A(A))" ...

e _andinfactum(p(a)) = mo(p'(a))v,ie. v e (p,p')

Definition

Let A be a cone. Then we define the cone von Neumann algebra
Ra = mo(A(A))".




Haag duality

Definition (Haag duality)

We say a representation my of  satisfies Haag duality for cones
it o (A(A))"” = mo(A(A°))". Or in other words, Ry = Rj..

Theorem (Fiedler-PN)

Haag duality for cones holds in all abelian quantum double
models.

Remark: the direction mo(2((A))” C mo(A(A€))’ always holds by
locality.

Remark

In the example of the toric code, we can construct everything
explicitly and Haag duality is only necessary to show
completeness.



Application I: localisation of
intertwiners

Lemma

Let Ay and Ay be two cones both contained in a larger cone A,
and suppose that p; is localised in A;. That is, pi(a) = m(a) for all
a € A(AS). Ifv € (p1, p2), then v € mo(A(A))”.

Proof.
Consider a € A(A€). Then we have

vmo(a) = vp1(a) = p2(a)v = mo(a)v,

where we used that the p; are localised in A twice. But this
implies v € mo(A(A°))" = mo(A(A))” by Haag duality. O



Application II: localised repns

Lemma

Suppose that & satisfies the superselection criterion. Then for
any cone A, there is an equivalent representation

pa A — B(Ho) such that pa(a) = mo(a) for all a € A(A°).
Moreover, if a € A(A), then pa(a) € mo(A(A))”.

Proof.

By the superselection criterion, there is a unitary v : H — Ho
such that vmr(a)v* = mp(a) for all a € A(A€). Define

pa(a) = vmp(a)v*. Then pp : A — B(Ho) is a representation.
Moreover, if a € A(A) and b € 2A(A€), we have

mo(b)pa(a) = v (b)v* v (a)v* = vr(ba)v* = vr(ab)v* = pp(a)mo(b).

The claim then follows by Haag duality. O



Localised representations

By construction, for the “anyon automorphisms” we defined,
7o 0 p(A(A)) C mo(A(A)), and infactp: A — A

For an arbitrary representation « satisfying the superselection
criterion we can get a unitary equivalent representation

p:A— B(Ho)suchthat p(a) = m(a) for all a € A(A°), where Ais
the localisation region of p. But in general p(A) C () is not
true, i.e. we cannot restrict to endomorphisms of 2.

However, we still get good control over the localisation, namely
p(A(A)) C mo(A(A))".
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The monoidal product



Monoidal structure

Recall that for End(2l), s € (p1, p2) andt € (o1, 02):
pRaT=pooa, s®t=spi(t).

However we cannot define the monoidal product on Apyr as for
End(2):
e Theintertwiners (charge transporters) of interest are in
mo(2A(A))” for some sufficiently large cone. But in general
thisis notin m(2A)! So p(v) need not be defined.

e More generally, a superselection sector does not lead to an
endomorphism of 2, as pa maps A(A) into a bigger algebra.
(although the examples we constructed all have this
property).



Auxiliary algebra

We need to make sense of p(v) where v € A(A)": extend pto a
bigger algebra that contains the intertwiners.

Fix a “forbidden direction” by choosing a cone an angle 6 € [0, 2r)
and0 < ¢ < wl Let C(0, ¢) be the set of cones whose ‘angles’
don'tintersect (6 — ¢,0 + ¢) (mod 27). That s, all cones that ‘point
in a different direction’.

The setC(6, ¢) is directed and Uy ce(p 4) A = R

Then define 0l
o= ) AA)”
AEC(0,9)
Note that 2 c aux,

"Following Ogata, J. Math. Phys. 63,2022



Extensions to the auxiliary algebra

Lemma

Letp: A — B(Ho) be localised and transportable. Then p can be
extended to a x-homomorphism p? : A2 — A2X Thijs extension
is weak-operator continuous on the algebras A(A)”.

Proof (sketch).

Let AbeaconeinC(4,¢). Let A’ be a cone disjoint from A. By
localisability, there is p’ localised in A’ and a unitary v such that
p(a) = vp'(a)v*. Butthenifa € A(A), we have

p(a) = vp'(a)v™ = vmo(a)v™.
But conjugation is weak operator continuous, so can extend to
the weak closure 2((A)”. The image is seen to be in A*™ using
Haag duality. O



Auxiliary algebra

e Category obtained in following can be shown to be
independent of choice of forbidden direction

e Technigue is similar to ‘puncturing the circle’

e Various other approaches:
- Universal algebra (Fredenhagen)

- ‘Coordinate charts’ (Frohlich-Gabbiani)
- Prefactorisation algebras (see talk Schenkel next week)

- Nets of representations (Gabbiani-Frohlich, Bhardwaj et al)



The category Apur

Definition (DHR category)

Given a representation m, the category Apgr has as objects
x-homomorphisms p : 2 — A¥™X which are

e |ocalised, ie. there is some cone A such that p(a) = a
(= mo(a)) for all a € A(A°);

e transportable, ie. for any other cone A/, there is a p’ localised
in A’ and a unitary v € B(Ho) such that

The morphisms are the intertwiners, i.e.
(p,o) :={s € B(Ho) : sp(a) =oc(a)s Va e A}.

Appnr depends on the choice of mg!



The tensor product

We can now define a tensor product (s € (p1, p2), t € (01,02)):
pRo:=poo, s®@t:=spi(t).

This is now well-defined! Moreover, the result is localised and
transportable again.

Proposition
The category Apgr is a tensor/monoidal category.

Proof.

Now everything is well-defined using the auxiliary algebra, this is
a straightforward calculation. O

e Thetensorunitis: :=idy, i.e. the vacuum sector.

e (Clear physical interpretation



Braiding



Anyon interchange




Anyon interchange

— = = = = = = = = — — —

____________/



Braiding

Definition

Let C be a monoidal category. A braiding on C is a family of
natural isomorphisms

Eab € Homc(a ®b,b® a)

such that following diagrams commute (next slides).
® cqpiscalledasymmetryifegpoepq = idpgq
e Can define a braided functor in the obvious way
Example

e The category of vector spaces with linear maps, with the
braiding given by the tensor flip (this is a symmetry)

e The representation category of a quasi-triangular
Hopf-algebra



Hexagon axioms

€a,b®c
a® (b®c) b®c)@a
(XV w‘l
(a®b)®c b® (c®a)

€a,bm %b&saﬁ

(b@a)@c T} b®(a®0)

The same should hold for € replaced by 1



Braiding

Consider again End 4. In general, for two endomorphisms p and
o, there needs to be no relation between p o o and o o p. SO NO
braiding can be defined!

Because objects in Apgr are localised and transportable, we can
define a braiding on Apgr!

As will become clear from the construction, it works because of
the geometric properties of the cones. This geometric origin can
be made much more explicit (see e.g. talk Schenkel next week).



Braiding: construction

e Consider p,o localised in A, and A, respectively.

e Choose a cone A, to the left of A, (this can be defined
unambiguously using the “forbidden direction’)

e There exists  localised in A, and a unitary v € (o, 5)

e By localisation, p ® ¢ = o ® p since they act non-trivially on
disjoint parts of the system!|

® Hencee,, = (v* ®id)(id, ®v) = v*p(v) € (pR 0,0 ® p)

The isomorphims are independent of the choices made and
define a braiding on Apgg.
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Braiding in the toric code

The explicit construction of charge transporters and
automorphisms in the toric code allow for explicit calculation of
the braiding operatorsl!

Main step is to calculate p%(v), where v transports o:

e ¢y = limw, in the weak operator topology
® p%is weak operator continuous: p®(v) = lim,, p(v,,)
e Butw, isalocal observable

e Cancompute p(vy,) explicitly and obtain p%(v) = v



Braiding in the toric code




Braiding in the toric code

The braiding is given as follows on the four sectors (sign
depends on the ‘relative position’):

Epipe | X | Y | Z
X I | £I | 1
Y FI | -1 | £l
A4 FI|FI| I

In particular ex z o ez x = —I (abelian anyonsl)



Fusion



Fusion categories

Consider C = Rep;G, where G'is a finite group. Thisis a
semi-simple monoidal category:

~ k
mrelrr(C)

For the toric code, we have something similar:
Px ®px EpzQ@pz =1 px Qpz = py etc.

In this case it is easy because the anyons are abelian. But we can
do something more generally!



Linear structure

Consider the category Apgr. We have a (‘unitary’) x-structure;
e AllHom-sets in the category are vector spaces over C

e The adjoint of B(H,) gives an anti-linear contravariant
functor x : Apgr — Apgr such that x(p) = p for all objects
and (p,0) 3 v —v* € (0,p).

e Infact (p, p) is a C*-algebra with norm inherited from B(H)

This means we can talk about (partial) isometries, orthogonal
projections and unitaries in the category. We can attempt to
define direct sums and for p € (p, p) an orthogonal projection,
subobjects.

Technical remark

Essentially (up to minor technical details), we want to show that
Apnr IS an additive category.




Interlude: factors

Let M be a factor: a vNA with M N M’ = CI.
Definition

Atraceon Mis alinear map 7 : M4 — [0, 00] such that
T(aa*) = 7(a*a) and 7(Az) = Ar(x) for A > 0.

On each factor there exists a trace that is non-zero on Factors
can be classified according to which values a trace can take on
projections:

e Typel,: {0,1,...,n}withn € NU{oo}. In this case,
M ~ B(H) for some Hilbert space H.

e Type lly: [0,1].
o Type lls: [0, 00].

e Typelll: {0,00}.
A factor is called properly infinite if oo is in the range of the trace.



Direct sums

IT p1, p2 are objects in Apyr, and v; are isometries such that
vv] + vouy = I, then

(p1 @ p2)(a) := vip1(a)v] + vap2(a)vs

is again a representation of 2.

Lemma (PN, Ogata)

For the toric code my(2L(A))" is a Type Il factor. In particular,
there exist v; € mo(A(A))” with vivf + vovy = I and viv; = L.

Corollary
The category Apgr has direct sums.

Note: it follows that v; € (p;, p1 ® p2)



Subobjects

Consider some p € Apgr and p € (p, p) an orthogonal projection.
A subobject for this pair is an object o € Apnr together with a
v € (o, p) such thatv*v = I and vv* = p.

This is the analogue of restricting a representation to an invariant
subspace.

Lemma (Ogata, arXiv:i2106.15741)

Ifp e (p,p)andpislocalisedin A, there is some isometry
v € A(A)" with vv* = p.

Corollary

The category Apgr has subobjects.

Choose o(a) = v*p(a)v. O




Fusion rules

Note that p; are subobjects of p1 @ po.

Ifp € (p, p) is a non-trivial projection, can get subobjects p1 (p2)
corresponding to p (resp. (1 — p)), and p = p1 @ po.

Definition

An objectin Apgr is called irreducible or simple if (p, p) = CI.

Want to obtain fusion rules: for p;, p; irreducible:

pi®pi= P N
]CEII‘I'(ADHR)

In general, it is not guaranteed that there are only finitely many
sectors, or that there is a decomposition into finitely many
irreducibles (i.e., the category is semi-simple).



Fusion rules in the toric code

The four sectors we have found have very simple fusion rules,
esg.

Note that all these should be understood up to unitary
equivalence.

For example, take two semi-infinite “X-strings” & and & with
different endpoints. Then

pe; ® pe, = Ad(F) =id
Physically, w(pe, ® pe,(a)) describes a state with two

X-excitations. But this has trivial total charge, and hence is in the
trivial sector.



Fusion of two X-anyons

SR
(, I ’ “ <y
w( 8y, &gy (w) ol e R

Thd ™ & fhe hejued
Sectoy |



Some remarks

e The existence of direct sums and subobjects follows from
quite general assumptions. In particular, they hold for pure
ground states of bounded finite range interactions (on Z?)
satisfying a spectral gap condition.?

e \We can construct models where the cone algebras are
Type lls or Type Il (and even provide the finer Il
classification). Models with the same superselection sectors
can have different type of cone algebras!®

e [fdim(p, p) < oo, it follows that p can be decomposed into
irreducibles.

’Ogata, J. Math. Phys. 63 (2023)
3Jones, PN, Penneys, Wallick (+ appendix Izumi). arXiv:2307.12552. To
appear in FoM Sigma.
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Further structure



Duality / rigidity

Definition
A conjugate for p € Appr is a triple (p,r,7) with r € (id, 5 ® p) and
7 € (id, p ® p) such that

(7 ®id,)(id, ®r) = id, (r* ® id,) (id, ®F) = id; .

This gives a conjugate charge, and allows us to define the
quantum dimension.

Warning

In the toric code (and many other models), we can explicitly
construct conjugates. However, it is not known if conjugates
automatically exist. In QFT, there are examples of sectors for
which a dual does not exist.



Completeness



Have we found all sectors?

We have constructed four different (irreducible) sectors for the
toric code (as expected)!

Question

Are these all irreducible sectors? That s, are there irreducible
representations satisfying the superselection criterion that are
not equivalent to one of these four?

Theorem (Bols-Vadnerkar, arXiv:2310.19661)

For each irreducible representation (C, p) of D(G) there is an
anyon sector w(©#). The representations {rx(©)} c , are
pairwise disjoint, and any anyon sector is unitarily equivalent to
one of them.



The category Apur

The quantum double D(G) of a finite group G is a certain Hopf
algebra constructed from C[G]:
® Rep; D(G) isa modular tensor category.

e [rreps are in 1-1 correspondence with pairs (C, p), where C'is
a conjugacy class of G, and p an irreducible representation
of the centraliser of some g € C.

e |n particular, for G = Zy there are four irreps.

Theorem

The category AJ . (ie, restrict to finite direct sums) for the toric
code is braided tensor equivalent to Rep D(Zs).

Proof sketch.

We have representatives of the four sectors, which we can map
toirreps of D(Z2). These are all irreducible sectors. O



Non-abelian quantum double model

The quantum double model can be defined for any finite group G
(with local Hilbert space H, = CIC).

IT G abelian, analysis is very similar to toric code

For non-abelian, can define ribbon operators similar to path
operators

However, if irrep of D(G) has d = dim > 1, corresponding
ribbon operators come in multiplets

Easier to construct amplimorphisms p : 2 — M ()

Can be mapped back to endomorphisms of 3 using
properly infiniteness of cone algebra

Obtain the category Rep; D(G) as expected!

'Bols, Hamdan, PN, VVadnerkar, arXiv:2503.15611



Open questions

e |s this category indeed an invariant?

e \When can we prove conjugates exist? (Note: if p has a
conjugate, it follows that dim(p, p) < o)

e Canwe find (physically meaningful) conditions that
guarantee that the category is modular?

e \Which states lead to an interesting superselection sector
theory?



Stability



Approximately factorisable autom.

Definition (Informal)
Let a € Aut(2A) be an automorphism. We say it is approximately
factorisable? if forany cone Aandéd > 0

1. There are automorphims 8a, EA of A(A) and similarly for A€,
together with automorphisms Z, 2 acting only ‘near the
boundary’ of A and unitaries v, v such that:

o = Ad(?.}) oZo (BA X ﬂAc)
a ' =Ad(®) 0 Z o (Br ® Bae)

2. The unitaries v and v can be approximated by unitaries in
translates of cones slightly wider opening angle than As with

error decaying fast enough.

@See Ogata, arXiv:2106.15741 for details



Approximately factorisable autom.

v

#=Ad(») 2= (fr\@ﬂ

flva- o)l =0
/ SMH{M'&JB
' Fai-




Where do these come from?

e These are a generalisation of finite-depth quantum circuits

e Also come from quasi-local automorphisms, i.e. a € Aut(2l)
satisfying a suitable Lieb-Robinson bound.

Let Hy be some gapped local dynamics satisfying the local
topological order conditions. Let Hy = Hp + ®5, where ®, is
some sufficiently small perturbation. Then H), is gapped as well,
and the ground states (obtained as weak-x limits of local ground
states) of both models are related by a approximately
factorisable automorphism.

This is a combination of results by Bravyi, Hastings, Michalakis &
Zwolak (JMP 51, 2010 and CMP 322, 2013) and Bachmann,
Nachtergaele, Michalakis and Sims (CMP 309, 2012).



Phases of matter

Definition

Two states wq, wy are said to be in the same (quantum) phase if
there is some approximately factorisable automorphism « such
that w; o a = wo.

Question

Suppose that w; and wy are in the same phase. How are the
categories Apgr(w1) and Apgr(ws) related?



Approximate Haag duality

Because « in general is not an automorphism of cone algebras,
mo o o needs not satisfy Haag duality for cones even if mg does.
= need a weaker notion|

Definition (Approximate Haag duality)

A representation mg of 20 is said to satisfy approximate Haag
duality (for cones) if for every cone A and e > 0 small enough,
there is a unitary Uy, (in B(Hp)) and R, > 0 such that

mo(A(A))" € Un,emo(A((A = Re)e))"UR .

Moreover, Uy . can be approximated by unitaries in the cone von
Neumann algebras with error going to zero fast enough.



Approximate Haag duality

Remark

I 7 satisfies Haag duality for cones, it also satisfies approximate
Haag duality.

Proposition (Ogata)

Approximate Haag duality is stable, in the sense that if & satisfies
approximate Haag duality, then so does o a.



Approximate Haag duality

no) (AR,

‘IT(AML))( C(j/ﬁc W(«(A»R{/)L) 'a::



Sector theory with approximate
Haag duality

Approximate Haag duality is enough to develop a sector theory
along the same lines as before.

Superselection criterion is the same

AT = Unec(o,0) oAy

Don't get strict localisation of representations, but get
decaying tails

But image still ends up in 3%
Same is true for intertwiners

Braiding is more complicated, as p o o # o o pif localised in
distinct cones due to decaying tails: have to do a limiting
procedure



Stability

Theorem (Ogata, arXiv:2106.15741)

Let @1, ®5 be two uniformly bounded finite range interactions on
Z? with pure gapped ground states w;. Suppose that there is an
approximate factorisable automorphism o such that wq = ws o «
and that one (and hence both) of the GNS representations .,
satisfies approximate Haag duality. Then the corresponding DHR
catgories are unitarily braided monoidally equivalent.

Hence the category of superselection sectors is an invariant of
the phasel?

’See also Cha, PN, Nachtergaele, arXiv:1804.03203



Long-range entanglement



Product states

The existence of anyons in the toric code is possible because
the state has long-range entanglement.

Definition
Let w be a pure state on A. Then w is a product state with respect

to a cone A if there are states wp on A, and wpe on A(A€) such
that w =~ wp ® wpe.

Proposition

Let w be a pure product state with respect to some cone A. Then
7w(A(A))" is a Type | factor and we have Ry = Rye.

Proof sketch.

The GNS representation factorises as Ha ® Hae, with m, (A(A))
acting on the first factor, and m, (2(A€)) on the second. By
irreducibility of m,, 7, (A(A))” = B(Ha) ® I. We see Haag duality
bv takine commutants. ]




Sector theory

Theorem (PN, Ogata arXiv:2102.07707)

Let w be a pure state which is a product state with respect to
some cone A. Then the sector theory with respect to w,, is trivial,
in the sense that every representation satisfying the SSC is a
(possibly infinite) direct sum of copies of .

Proof sketch.

Localise win A. Then we get an equivalent mp and a normal
endomorphism ma : Ra — Ra. But this must be some direct sum
of the identity representation. O

e \We only need w being product with respect to a single cone,
however the superselection criterion must hold for all cones.

e |tisimportant thatw is pure, which implies R, is a factor.



Long-range entanglement

Definition

A state wis said to be long-range entangled if w o wis Not a
product state with respect to a cone for any quasi-factorisable
automorphism c.

Corollary

If wis not long-range entangled, the corresponding
superselection structure Apgr(w) Is trivial.

Thus you need long-range entanglement to get anyonsl!



Completeness: alternative
approach



Completeness: alternative
approach

The previous result relies on detailed knowledge of the quantum
double model and its frustration-free ground state.

There is an alternative approach based on the Jones index of a
certain subfactor.

This is based on analogous results for rational conformal field
theory.3
e Consider two disjoint cones A4 and Ag such that...

o .thereisaTypelfactor N'suchthat Ry, C N CR) ..
e This holds for guantum double models
e Can define two von Neumann algebras:

Rap :=Ra, VRag, Rap = RI(AAuAB)c
3Kawahigashi. Longo. Mlger Commun. Math. Phys. 219 (2001)




Cone algebras

/
Rag: RaVe ¢ Ravgy



Relation between the two algebras

e From locality it follows that Rag C ﬁAB

e However in general the two are not equal (even if Haag
duality holds)!

From irreducibility of m, it follows that R 4g and ﬁAB are
factors

e .and R,z NRap=CI

Hence Rap C Rag is anirreducible subfactor

Let pa g be localised in A g and v € (pa, pp) Unitary. Then
v € RaB

e Butingeneralv ¢ Rap!



Relative sizes

Main idea

The algebra Rap IS bigger because it contains the charge
transporters. Hence if we can “quantify” how much bigger, we
may learn something about the number of sectors.

We can use the Jones index [Rap : Rap:
® [Rap: Rap) > 1withequality Iff Rap = Rap

o |f [ﬁAB : Rap] < oo, thereare by, ..., b, € ﬁAB such that

n
7/?\,143 = {Zaibi ta; € 'RAB} .
i=0



Upper bound on number of sectors

Theorem (PN, J Math Phys 54 (2013))

The number of (irreducible) superselection sectors is bounded
from above by R
HAB = AjB/f;B [RaB : Rag].

If each sector has a conjugate, we have Y, d(p;)? < pas.

° Eor abelian quantum double models, we can show
Rap %o (G X G).

o |t follows [Rap : Rap] = 4 for the toric code.

e Since we have constructed four sectors, these must be alll



Summary



Summary

e Can obtain a braided C*-category of superselection sectors
from first principles from local dynamics

e . using only a few assumptions ((approximate) Haag duality
and ground state gap)

e Anyons can be identified with representations satisfying
7 [ A(A) = mg | A(A)

Category can be constructed explicitly in models such as the
toric code or quantum double, and gives the expected result

The category is an invariant of the guantum phase

Need long-range entanglement to get non-trivial sectors!



