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Introduction



What to expect?
Main issue: the classification of gapped ground states:
• Wewill always work in the thermodynamic limit

• Gapped ground states of local Hamiltonians...

• ... with some equivalence relation

• Focus on states with topological order (or long-range
entanglement)

• Non-invertible states

Question
Can we find (physically interesting) invariants?



Why are these states interesting?
• Can host anyons: quasi-particles/superselection
sectors/charges/... with braided statistics

• Algebraic properties of anyons are described by braided
tensor C→-categories (typically even modular or braided
fusion)

• ‘Topological’ nature makes these properties robust

• In other words, the category should be an invariant

Question
How can we obtain the category of anyons from amicroscopic
description of the state? (And is this indeed an invariant?)



What not to expect?
• Not a historical overview

• Only non-chiral topological order

• Will focus on basics, not most general statements

• Only discuss the operator-algebraic “DHR approach” to
superselection sectors

• Will gloss over more technical details



Plan for the week
• Lecture 1: The toric code and its ground states

• Lecture 2&3: The category of superselection sectors

• Lecture 4: Classification of phases and long-range
entanglement

We illustrate the theory by the example of the toric code, but
methods work muchmore general!



Some history
Approach is rooted in Doplicher-Haag-Roberts theory:1

• Originates in algebraic quantum field theory, defined in
terms of Haag-Kastler nets of observables O !→ A(O)

• DHR theory attempts to capture ‘charges’ and leads to
Bose/Fermi (para-)statistics in (3+1)D

• Culminates in Doplicher-Roberts theorem: a STC→-category
is equivalent to RepG for some compact groupG

• In lower dimensions, can get braided statistics (anyons!)

• Similar techniques have been very successful in CFT
(conformal nets)

1Haag, Local Quantum Physics, Springer (1992)



Different approaches
Themain feature of the approach is the appearance of a braiding
(describing anyon exchange).

Question
How does this braiding appear?

• ‘Classical DHR approach’: these lectures
(See also Ogata, arXiv:2106.15741)

• Prefactorisation algebras (geometric approach)
(Benini, Carmona, PN, Schenkel, arXiv:2505.07960)
→ talk Alexander Schenkel next week

• Axiomatic approach: nets on certain posets
(Bhardwaj, Brisky, Chuah, Kawagoe, Keslin, Penneys, Wallick:
arXiv:2410.21454)



The toric code



The toric code

Hx = C2



The toric code

Ax = M2(C)



Pauli matrices
Recall the definition of the Pauli matrices:

ωx =

(
0 1
1 0

)
ωy =

(
0 −i
i 0

)
ωz =

(
1 0
0 −1

)

They have nice algebraic properties: {ωi,ωj} = 2δi,jI :
• Square to the identity

• Different Pauli matrices anti-commute

• Together with I form a basis ofM2(C).



Stars and plaquettes

p

s



Dynamics
We define star and plaquette operators:

As =
⊗

j∈s
ωx
j , Bp =

⊗

j∈p
ωz
j .

Some easy properties: A2
s = B2

p = I , and all commute.
Can use this to define the dynamics:

HΛ =
∑

s⊂Λ

(I −As) +
∑

p⊂Λ

(I −Bp)

Note that the dynamics are very simple (“commuting projector”)!



Frustration-free ground state

Lemma
LetXi ≤ I be a set of operators and suppose that there is a
unique state ω such that ω(Xi) = 1 for allXi. Then ω is pure.

Proof.
Let φ be a positive linear functional such that φ ≤ ω. Since
I −Xi ≥ 0, we have

0 ≤ φ(I −Xi) ≤ ω(I −Xi) = 0.

Hence φ(Xi) = φ(I). From the uniqueness assumption,
φ = φ(I)ω, and it follows that ω is pure.

Lemma
LetX ≤ I with ω(X) = 1. Then ω(A) = ω(AX) = ω(XA).



Frustration-free ground state

Theorem
The toric code has a unique frustration free ground state ω0. This
state is pure.

Proof.
One can show (exercise!) that there is a state such that
ω0(As) = ω0(Bp) = 1 for all star and plaquette operators, and
these conditions uniquely determine it. Hence ω0 is pure. Note
that ω0(I −As) = ω0(I −Bp) = 0. ForA ∈ Aloc, we have

−iω0(A
→δ(A)) =

∑

s

ω0(A
→AAs)− ω0(A

→AsA) +Bp terms

=
∑

s

ω0(A
→(I −As)A) +Bp terms

≥ 0



An aside...
When defined on a non-trivial topology (e.g. a torus), the
condition ω(As) = ω(Bp) = 1 fixes the state locally but not
globally. In fact, the ground state space is a quantum error
correction code!

Ground space degeneracy is given by 4g



GNS representation
Wewill use ω0 throughout as a reference state.
• GNS representation (π0,Ω,H0)

- π0 : A → B(H0) ∗-representation

- π0(A)Ω dense inH0

- ω0(A) = ⟨Ω,π0(A)Ω⟩H0

• Will often identify π0(A)withA

• We haveAsΩ = BpΩ = Ω (stabiliser condition):
! HΛΩ = 0 for all Λ

• Hamiltonian in GNS representation withHΩ = 0,H ≥ 0
satisfies spec(H) ∩ (0, 2) = ∅ (spectral gap)

• State satisfies LTQO conditions: spectral gap is stable!



Excitations



Path operators
We can consider paths ξ and dual paths ξ̂:

ξ

ξ̂



Path operators
And corresponding operators Fξ and Fξ̂ :

ωz

ωz

ωz

ωz ωz

Fξ

Fξ̂

ωx ωx

ωx

ωx ωx ωx



Path operators
The edges on which the path operators act always have an even
number in common with star and plaquette operators and hence

[Fξ, As] = [Fξ, Bp] = [Fξ̂, As] = [Fξ̂, Bp] = 0

except at the endpoints of the path! Path operators Fξ

anti-commute with star operators at endpoint, whilst the Fξ̂

anti-commute with the plaquette operators.

Excitations
The path operators create a pair of electric or magnetic
excitations respectively.

We have

HΛFξΩ = 2#(∂ξ ∩ Λ)FξΩ, HΛFξ̂Ω = 2#(∂ξ̂ ∩ Λ)Fξ̂Ω

where #(∂ξ ∩ Λ) is the number of endpoints of ξ within Λ



Path operators

ξ

ξ̂



Single excitations
The state FξΩ describes a pair of anyons/excitations.
Alternatively, in the Heisenberg picture,

ρZξ (a) := FξaF
→
ξ = (AdFξ)(a)

is an automorphism ofA that describes how observables change
in the presence of the two excitations.

Question
Can we describe a single excitation?

Answer
Yes! We work on an infinite lattice, so can send one of the
excitations to infinity:

ρZξ (a) := lim
n→∞

FξnaF
→
ξn

where ξn are the first n parts of a semi-infinite ribbon ξ.



Cones



Localised automorphisms
• Can choose a cone Λ as in the picture...

• ... and a semi-infinite path ξ ⊂ Λ.

• We get a corresponding automorphism ρZξ .

• This is localised in Λ: ρZξ (a) = a for all a ∈ A(Λc).

Notation
We can do something similar for dual paths to get ρXξ or for the
combination of a path and dual path, to get ρYξ . We will use the
notation ξ for all types of paths, with notation ρkξ for k = X,Y, Z .
By definition, ρ0ξ = id.



Single anyon states
The states ω0 ◦ ρkξ describe single anyon states (trivial, electric,
magnetic, and “combined” state)!
These have a topological property, in the sense that the
“direction” of the string is invisible:

ξ ! ξ Bp ! ξ′

So we have
ω0(FξaF

→
ξ ) = ω0(BpFξaF

→
ξ Bp) = ω0(Fξ′aF

→
ξ′)

Wemay write ω0 ◦ ρkx where x is the endpoint of the path. Note
that the automorphism ρk do depend on ξ!



Equivalence of states on A

Definition
Let ω1,ω2 be two pure states. Then we say they are equivalent if
the corresponding GNS representations are unitarily equivalent.

Lemma
Two pure states ω1 and ω2 on the quasi-local algebra A are
equivalent if and only if for every ε > 0, there is some finite set Λ
such that for every local observableA localised outside Λwe
have

|ω1(A)− ω2(A)| ≤ ε∥A∥.

Pure states are inequivalent if they can be distinguished ‘at
infinity’!



Inequivalence of states

Lemma
The states ω0 ◦ ρkx and ω0 ◦ ρk

′
y are inequivalent if k ̸= k′.

Proof.
We can move the excitations over a finite distance using local
unitaries, so wlog wemay assume x = y. Consider a closed loop
ξ. Then one sees that

Fξ =
∏

p⊂int(ξ)

Bp,

and something similar for closed dual loops.
Since the ribbon operators commute with anyAs andBp (apart
from possibly at the end-point, where they may anti-commute), it
follows that ρkx(Fξ) = ±Fξ , and ω0 ◦ ρkx(Fξ) = ±1.



Inequivalence of states

Lemma
The states ω0 ◦ ρkx and ω0 ◦ ρk

′
y are inequivalent if k ̸= k′.

Proof.
(... cont.) The result is−1 only if ξ circles around x, and k ̸= 0 and ξ
is of a different type! Since for any finite set Λ, we can choose a
loop surrounding Λ and the endpoint of the semi-infinite ribbon,
we can always find an operatorX ∈ A(Λc)with ∥X∥ = 1 such that

|ω0 ◦ ρkx(X)− ω0 ◦ ρk
′

x (X)| = 2.

Since both states are pure, the result follows.
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The story so far...
We have considered the toric code on the Z2-lattice and
constructed:
• A pure frustration-free ground state ω0

• Automorphisms ρk describing single anyons (electric,
magnetic and electromagnetic)

• This gives four equivalence classes of irreducible
representations

Questions
• How do we know how to choose which representations?

• Does this set of representations have more structure?



The superselection criterion



Superselection rules
Consider representation π : A → B(H)with ψ1,ψ2 ∈ H unit
vectors. Let ψω = ψ1+eiθψ2→

2
and define the state

ωω(A) := 〈ψω,π(A)ψω〉.
The (state) vectors ψ1,ψ2 satisfy a superselection rule1 if the
expectation values are independent of the relative phase! (This
can only happen if π is not irreducible!)

Definition
Two states ω1,ω2 are called not superposable if in any
representation π that contains vectors ψ1, ψ2 implementing the
states, we have that

ωαψ1+βψ2(A) = |α|2ωψ1(A) + |β|2ωψ2(A) = |α|2ω1(A) + |β|2ω2(A)

for all α,β ∈ Cwith |α|2 + |β|2 = 1.
1Wick, Wightman andWigner, Physical Review, 88:101–105, 1952



Superposable irreducible
representations

Theorem
Let ω1,ω2 be pure states of A. Then they are superposable iff
their GNS representations πω1 and πω2 are unitarily equivalent.

• Equivalent representations have the same (normal) states
• Can think of different equivalence classes as describing
different ‘charges’

• Total charge cannot be changed with (quasi-)local operators!
• The vectors in the representation can describe many
excitations (but all have the same ’total charge’)

Problem
There are many ‘unphysical’ irreps of A!



GNS representations for anyon
states
Recall that (π0,Ω,H0) is the GNS representation of the
frustration free ground states. Since the maps ρkx are
automorphisms of A, π0 ◦ ρkx is again a representation. Moreover,
Ω is cyclic for this representation. We have

〈Ω,π0 ◦ ρkx(a)Ω〉 = ω0(ρ
k
x(a)).

Now let ρx and ρ′x be two such automorphisms defined in terms
of semi-infinite ribbons ξ and ξ′ with the same endpoint. Then
ω0 ◦ ρx = ω0 ◦ ρ′x, so by uniqueness of the GNS representation
there must be a unitary V ∈ B(H0) such that

V π0 ◦ ρx(a) = π0 ◦ ρ′x(a)V.

These are called charge transporters.



The superselection criterion

Definition (Superselection criterion)
Let π0 be an irreducible “reference” representation of A. Then π
satisfies the superseleciton criterion if

π ! A(Λc) ∼= π0 ! A(Λc)

for all cones Λ.

• Interpretation is that of localisable and transportable
representations.

• An equivalence class is called a (superselection) sector

• A general C∗-algebra has many inequivalent
representations, but for a given π0, not many sectors!

• Choice of cone depends on class of models to study.



Sectors of the toric code

Theorem
There are (at least) four irreducible sectors for the toric code.

Proof.
Fix a cone Λ. Choose a semi-infinite path ξk for each k = X,Y, Z
inside the cone. Then π0 ◦ ρkξk(a) = π0(a) for all a ∈ A(Λc). Let Λ′

be a different cone, and choose paths ξ′k ⊂ Λ′ as above. Then by
independence of the state ω0 ◦ ρkξk on the path (plus moving a
charge over a finite distance), it follows that π0 ◦ ρkξk

∼= π0 ◦ ρkξ′k .
Moreover, from the previous results the four representations
π0 ◦ ρkξk are all inequivalent, and hence in distinct sectors.

Remark
It turns out these are all irreducible sectors, but we will come
back to this later.



What’s next
We considered the toric code on the Z2 lattice:
• Constructed four types of automorphisms ρkx (k = 0, X, Y, Z)

• The representations satisfy the superselection criterion:

π0 ◦ ρkx ! A(Λc) ∼= π0 ! A(Λc)

for all cones Λ

• Representations have the interpretation of describing an
anyon

• Anyons are localizable and transportable

We can define extra structure on this set of representations,
such as fusion and braiding!



Monoidal/tensor categories

Definition
Amonoidal category is a category C with a bifunctor
⊗ : C × C → C together with a distinguished object 1C ∈ C and the
following families of natural isomorphisms:
1. Associators αa,b,c : (a⊗ b)⊗ c

$−→ a⊗ (b⊗ c)

2. Unitors λa : 1C ⊗ a
$−→ a and ρa : a⊗ 1C

$−→ a

for all a, b, c ∈ C . These should satisfy the pentagon and triangle
axioms.

Definition
If the associators and unitors are the identity, we say that C is a
strict monoidal category.



Pentagon axiom

((a⊗ b)⊗ c)⊗ d (a⊗ b)⊗ (c⊗ d)

(a⊗ (b⊗ c))⊗ d a⊗ (b⊗ (c⊗ d))

a⊗ ((b⊗ c)⊗ d)

αa⊗b,c,d

αa,b,c⊗idd

αa,b⊗c,d

αa,b,c⊗d

ida ⊗αb,c,d



Triangle axiom

(a⊗ 1C)⊗ b a⊗ (1C ⊗ b)

a⊗ b

ρa⊗idb ida ⊗λb

αa,1C ,c



A warm-up

Example
Let A be a unital C∗-algebra. Then we can define the category
End(A) of unital *-endomorphisms of A, with the following
morphisms:

HomEnd(A)(ρ,σ) := {T ∈ A : Tρ(a) = σ(a)T ∀a ∈ A},

with composition the composition of morphisms.
This has a⊗-product, defined objects as ρ⊗ σ := ρ ◦ σ. If
S ∈ Hom(ρ1, ρ2) and T ∈ Hom(σ1,σ2), define

S ⊗ T := Sρ1(T ) ∈ Hom(ρ1 ⊗ σ1, ρ2 ⊗ σ2).

This makes End(A) into a strict monoidal category. (Exercise!)



Charge transporters



The category ∆DHR

Motivated by the example End(A), we define:

Definition (DHR category, first attempt)
Given a representation π0, the category∆DHR has as objects
endomorphisms ρ of Awhich are
• localised, i.e. there is some cone Λ such that ρ(a) = a for all
a ∈ A(Λc);

• transportable, i.e. for any other cone Λ′, there is a ρ′ localised
in Λ′ and a unitary v ∈ B(H0) such that

vπ0(ρ(a)) = π0(ρ
′(a))v.

Themorphisms are the intertwiners, i.e.

(ρ,σ) := {s ∈ B(H0) : sπ0 ◦ ρ(a) = π0 ◦ σ(a)s ∀a ∈ A}.

Note: we have v ∈ (ρ, ρ′) for the charge transporters.



Some remarks on ∆DHR

• The automorphisms ρkx defined earlier are in∆DHR

• Conversely, if ρ ∈ ∆DHR, π0 ◦ ρ satisfies the superselection
criterion

• The category depends on the choice of π0 via the
transportability condition!

• This is not a subcategory of End(A) since the morphisms
(charge transporters) in∆DHR need not be in π0(A)

• In particular, monoidal product will be more complicated



Charge transporters
We can explicitly construct charge transporters v:
• Consider semi-finite ribbons ξ, ξ′ ⊂ Λwith the same
endpoint x and look at the corresponding automorphisms ρ
and ρ′

• Write ξn (ξ′n) for the first n edges on the path.

• For each n, choose path ξ̂n connecting ends of ξn and ξ′n …

• …such that dist(ξ̂n, x) → ⇔

• Define vn := Fξn . Then limn→≃ vnρ(a)− ρ′(a)vn = 0 for all
a ∈ A.

• Interpretation: vn moves back the excitation along ξ, then go
back along ξ′ via ξ̂n



Charge transporters



Charge transporters



Interlude: von Neumann algebras

Definition
LetH be a Hilbert space andM ⊂ B(H) be a unital ∗-subalgebra.
ThenM is called a von Neumann algebra ifM = M′′.

Theorem (Bicommutant theorem)
The following are equivalent:
1. M is a von Neumann algebra

2. M is closed in the weak operator topology:
xλ → xwot⇔ 〈φ, (xλ − x)ψ〉 → 0 for all φ,ψ ∈ H.

3. M is closed in the strong operator topology:
xλ → x sot⇔‖(xλ − x)ψ‖ → 0 for all ψ ∈ H.



Charge transporters

Warning
The sequence vn does not converge (in norm) to an element in A
in general.

However, π0(vn) does converge (to a unitary) in the strong
operator topology.

Proof (sketch).
It is enough to show that vnaΩ is a Cauchy sequence for a ∈ Aloc.
Note that for n large enough, supp a ∩ supp(vn)will be constant.
For such n, decompose vn as product of three path operators,
such that the middle part has empty intersection with the
support of a. Using that FξΩ only depends on the endpoints of ξ,
it follows that for each a ∈ Aloc, for n > k with k large enough,

vnaΩ = FξkFξ̃nFξ′kaΩ = FξkFξ′kaFξ̃nΩ



Charge transporters
Let Λ be a cone containing the localisation regions of ρ and ρ′:
• It follows that v ∈ π0(A(Λ))′′ …

• …and in fact vπ0(ρ(a)) = π0(ρ′(a))v, i.e. v ∈ (ρ, ρ′)

Definition
Let Λ be a cone. Then we define the cone von Neumann algebra
RΛ := π0(A(Λ))′′.



Haag duality

Definition (Haag duality)
We say a representation π0 of A satisfies Haag duality for cones
if π0(A(Λ))′′ = π0(A(Λc))′. Or in other words,RΛ = R′

Λc .

Theorem (Fiedler-PN)
Haag duality for cones holds in all abelian quantum double
models.

Remark: the direction π0(A(Λ))′′ ⊂ π0(A(Λc))′ always holds by
locality.

Remark
In the example of the toric code, we can construct everything
explicitly and Haag duality is only necessary to show
completeness.



Application I: localisation of
intertwiners

Lemma
Let Λ1 and Λ2 be two cones both contained in a larger cone Λ,
and suppose that ρi is localised in Λi. That is, ρi(a) = π0(a) for all
a ∈ A(Λc

i ). If v ∈ (ρ1, ρ2), then v ∈ π0(A(Λ))′′.

Proof.
Consider a ∈ A(Λc). Then we have

vπ0(a) = vρ1(a) = ρ2(a)v = π0(a)v,

where we used that the ρi are localised in Λ twice. But this
implies v ∈ π0(A(Λc))′ = π0(A(Λ))′′ by Haag duality.



Application II: localised repns

Lemma
Suppose that π satisfies the superselection criterion. Then for
any cone Λ, there is an equivalent representation
ρΛ : A → B(H0) such that ρΛ(a) = π0(a) for all a ∈ A(Λc).
Moreover, if a ∈ A(Λ), then ρΛ(a) ∈ π0(A(Λ))′′.

Proof.
By the superselection criterion, there is a unitary v : H → H0

such that vπ(a)v∗ = π0(a) for all a ∈ A(Λc). Define
ρΛ(a) = vπ0(a)v∗. Then ρΛ : A → B(H0) is a representation.
Moreover, if a ∈ A(Λ) and b ∈ A(Λc), we have

π0(b)ρΛ(a) = vπ(b)v∗vπ(a)v∗ = vπ(ba)v∗ = vπ(ab)v∗ = ρΛ(a)π0(b).

The claim then follows by Haag duality.



Localised representations
By construction, for the “anyon automorphisms” we defined,
π0 ◦ ρ(A(Λ)) ⊂ π0(A(Λ)), and in fact ρ : A → A.

For an arbitrary representation π satisfying the superselection
criterion we can get a unitary equivalent representation
ρ : A → B(H0) such that ρ(a) = π0(a) for all a ∈ A(Λc), where Λ is
the localisation region of ρ. But in general ρ(A) ⊂ π0(A) is not
true, i.e. we cannot restrict to endomorphisms of A.

However, we still get good control over the localisation, namely
ρ(A(Λ)) ⊂ π0(A(Λ))′′.
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The monoidal product



Monoidal structure
Recall that for End(A), s ∈ (ω1, ω2) and t ∈ (ε1,ε2):

ω⊗ ε = ω ◦ ε, s⊗ t = sω1(t).

However we cannot define the monoidal product on∆DHR as for
End(A):
• The intertwiners (charge transporters) of interest are in
π0(A(Λ))′′ for some sufficiently large cone. But in general
this is not in π0(A)! So ω(v) need not be defined.

• More generally, a superselection sector does not lead to an
endomorphism of A, as ωΛ maps A(Λ) into a bigger algebra.
(although the examples we constructed all have this
property).



Auxiliary algebra
We need to make sense of ω(v)where v ∈ A(Λ)′′: extend ω to a
bigger algebra that contains the intertwiners.
Fix a “forbidden direction” by choosing a cone an angle θ ∈ [0, 2π)
and 0 < φ < π.1 Let C(θ,φ) be the set of cones whose ‘angles’
don’t intersect (θ− φ, θ+ φ) (mod 2π). That is, all cones that ‘point
in a different direction’.

The set C(θ,φ) is directed and
⋃

Λ∈C(θ,ε) Λ = R2.

Then define
Aaux :=

⋃

Λ∈C(θ,ε)

A(Λ)′′
‖·‖

Note that A ⊂ Aaux.

1Following Ogata, J. Math. Phys. 63, 2022



Extensions to the auxiliary algebra

Lemma
Let ω : A → B(H0) be localised and transportable. Then ω can be
extended to a ∗-homomorphism ωa : Aaux → Aaux. This extension
is weak-operator continuous on the algebras A(Λ)′′.

Proof (sketch).
Let Λ be a cone in C(θ,φ). Let Λ′ be a cone disjoint from Λ. By
localisability, there is ω′ localised in Λ′ and a unitary v such that
ω(a) = vω′(a)v∗. But then if a ∈ A(Λ), we have

ω(a) = vω′(a)v∗ = vπ0(a)v
∗.

But conjugation is weak operator continuous, so can extend to
the weak closure A(Λ)′′. The image is seen to be in Aaux using
Haag duality.



Auxiliary algebra
• Category obtained in following can be shown to be
independent of choice of forbidden direction

• Technique is similar to ‘puncturing the circle’
• Various other approaches:

- Universal algebra (Fredenhagen)

- ‘Coordinate charts’ (Fröhlich-Gabbiani)

- Prefactorisation algebras (see talk Schenkel next week)

- Nets of representations (Gabbiani-Fröhlich, Bhardwaj et al.)



The category ∆DHR

Definition (DHR category)
Given a representation π0, the category∆DHR has as objects
∗-homomorphisms ω : A → Aaux which are
• localised, i.e. there is some cone Λ such that ω(a) = a
(= π0(a)) for all a ∈ A(Λc);

• transportable, i.e. for any other cone Λ′, there is a ω′ localised
in Λ′ and a unitary v ∈ B(H0) such that

vω(a) = ω′(a)v.

Themorphisms are the intertwiners, i.e.

(ω,ε) := {s ∈ B(H0) : sω(a) = ε(a)s ∀a ∈ A}.

∆DHR depends on the choice of π0!



The tensor product
We can now define a tensor product (s ∈ (ω1, ω2), t ∈ (ε1,ε2)):

ω⊗ ε := ωa ◦ ε, s⊗ t := sωa1(t).

This is now well-defined! Moreover, the result is localised and
transportable again.

Proposition
The category∆DHR is a tensor/monoidal category.

Proof.
Now everything is well-defined using the auxiliary algebra, this is
a straightforward calculation.

• The tensor unit is ι := idA, i.e. the vacuum sector.

• Clear physical interpretation



Braiding



Anyon interchange



Anyon interchange



Braiding

Definition
Let C be a monoidal category. A braiding on C is a family of
natural isomorphisms

εa,b ∈ HomC(a⊗ b, b⊗ a)

such that following diagrams commute (next slides).

• εa,b is called a symmetry if εa,b ◦ εb,a = idb⊗a

• Can define a braided functor in the obvious way

Example
• The category of vector spaces with linear maps, with the
braiding given by the tensor flip (this is a symmetry)

• The representation category of a quasi-triangular
Hopf-algebra



Hexagon axioms

a⊗ (b⊗ c) (b⊗ c)⊗ a

(a⊗ b)⊗ c b⊗ (c⊗ a)

(b⊗ a)⊗ c b⊗ (a⊗ c)

αa,b,c

εa,b⊗c

αb,c,a

εa,b⊗idc

αb,a,c

idb ⊗εa,c

The same should hold for ε replaced by ε−1



Braiding
Consider again EndA. In general, for two endomorphisms ω and
ε, there needs to be no relation between ω ◦ ε and ε ◦ ω. So no
braiding can be defined!

Because objects in∆DHR are localised and transportable, we can
define a braiding on∆DHR!

Remark
As will become clear from the construction, it works because of
the geometric properties of the cones. This geometric origin can
bemademuchmore explicit (see e.g. talk Schenkel next week).



Braiding: construction
• Consider ω,ε localised in Λρ and Λσ respectively.

• Choose a cone Λ̂σ to the left of Λρ (this can be defined
unambiguously using the ‘forbidden direction’)

• There exists ε̂ localised in Λ̂σ and a unitary v ∈ (ε, ε̂)

• By localisation, ω⊗ ε̂ = ε̂ ⊗ ω since they act non-trivially on
disjoint parts of the system!

• Hence ερ,σ := (v∗ ⊗ id)(idρ⊗v) = v∗ω(v) ∈ (ω⊗ ε,ε ⊗ ω)

The isomorphims are independent of the choices made and
define a braiding on∆DHR.



Braiding



Braiding in the toric code
The explicit construction of charge transporters and
automorphisms in the toric code allow for explicit calculation of
the braiding operators!
Main step is to calculate ωa(v), where v transports ε:
• v = lim vn in the weak operator topology

• ωa is weak operator continuous: ωa(v) = limn ω(vn)

• But vn is a local observable

• Can compute ω(vn) explicitly and obtain ωa(v) = ±v



Braiding in the toric code



Braiding in the toric code
The braiding is given as follows on the four sectors (sign
depends on the ‘relative position’):

ερ1,ρ2 X Y Z
X I ±I ±I
Y ∓I −I ±I
Z ∓I ∓I I

In particular εX,Z ◦ εZ,X = −I (abelian anyons!)



Fusion



Fusion categories
Consider C = RepfG, whereG is a finite group. This is a
semi-simple monoidal category:

πi ⊗ πj ∼=
⊕

πk∈Irr(C)

Nk
ijπk

For the toric code, we have something similar:

ωX ⊗ ωX ∼= ωZ ⊗ ωZ ∼= ι ωX ⊗ ωZ ∼= ωY etc...

In this case it is easy because the anyons are abelian. But we can
do something more generally!



Linear structure
Consider the category∆DHR. We have a (‘unitary’) ∗-structure:
• All Hom-sets in the category are vector spaces over C

• The adjoint ofB(H0) gives an anti-linear contravariant
functor ∗ : ∆DHR → ∆DHR such that ∗(ω) = ω for all objects
and (ω,ε) ∋ v ,→ v∗ ∈ (ε, ω).

• In fact (ω, ω) is a C∗-algebra with norm inherited fromB(H0)

This means we can talk about (partial) isometries, orthogonal
projections and unitaries in the category. We can attempt to
define direct sums and for p ∈ (ω, ω) an orthogonal projection,
subobjects.

Technical remark
Essentially (up to minor technical details), we want to show that
∆DHR is an additive category.



Interlude: factors
LetM be a factor: a vNA withM ∩M′ = CI .
Definition
A trace onM is a linear map τ : M+ → [0,∞] such that
τ(aa∗) = τ(a∗a) and τ(λx) = λτ(x) for λ ≥ 0.

On each factor there exists a trace that is non-zero on Factors
can be classified according to which values a trace can take on
projections:
• Type In: {0, 1, . . . , n}with n ∈ N ∪ {∞}. In this case,
M ≃ B(H) for some Hilbert spaceH.

• Type II1: [0, 1].
• Type II∞: [0,∞].
• Type III: {0,∞}.

A factor is called properly infinite if∞ is in the range of the trace.



Direct sums
If ω1, ω2 are objects in∆DHR, and vi are isometries such that
v1v∗1 + v2v∗2 = I , then

(ω1 ⊕ ω2)(a) := v1ω1(a)v
∗
1 + v2ω2(a)v

∗
2

is again a representation of A.

Lemma (PN, Ogata)
For the toric code π0(A(Λ))′′ is a Type II∞ factor. In particular,
there exist vi ∈ π0(A(Λ))′′ with v1v∗1 + v2v∗2 = I and v∗i vi = I .

Corollary
The category∆DHR has direct sums.

Note: it follows that vi ∈ (ωi, ω1 ⊕ ω2)



Subobjects
Consider some ω ∈ ∆DHR and p ∈ (ω, ω) an orthogonal projection.
A subobject for this pair is an object ε ∈ ∆DHR together with a
v ∈ (ε, ω) such that v∗v = I and vv∗ = p.

This is the analogue of restricting a representation to an invariant
subspace.

Lemma (Ogata, arXiv:2106.15741)
If p ∈ (ω, ω) and ω is localised in Λ, there is some isometry
v ∈ A(Λ)′′ with vv∗ = p.

Corollary
The category∆DHR has subobjects.

Proof.
Choose ε(a) = v∗ω(a)v.



Fusion rules
Note that ωi are subobjects of ω1 ⊕ ω2.
If p ∈ (ω, ω) is a non-trivial projection, can get subobjects ω1 (ω2)
corresponding to p (resp. (1− p)), and ω = ω1 ⊕ ω2.

Definition
An object in∆DHR is called irreducible or simple if (ω, ω) = CI .

Want to obtain fusion rules: for ωi, ωj irreducible:

ωi ⊗ ωj =
⊕

k∈Irr(∆DHR)

Nk
ijωk

In general, it is not guaranteed that there are only finitely many
sectors, or that there is a decomposition into finitely many
irreducibles (i.e., the category is semi-simple).



Fusion rules in the toric code
The four sectors we have found have very simple fusion rules,
e.g.

ωX ⊗ ωX ∼= id ∼= ωZ ⊗ ωZ ωX ⊗ ωZ ∼= ωY .

Note that all these should be understood up to unitary
equivalence.

For example, take two semi-infinite “X-strings” ξ1 and ξ2 with
different endpoints. Then

ωξ1 ⊗ ωξ2
∼= Ad(Fξ) ∼= id

Physically, ω(ωξ1 ⊗ ωξ2(a)) describes a state with two
X-excitations. But this has trivial total charge, and hence is in the
trivial sector.



Fusion of two X-anyons



Some remarks
• The existence of direct sums and subobjects follows from
quite general assumptions. In particular, they hold for pure
ground states of bounded finite range interactions (on Z2)
satisfying a spectral gap condition.2

• We can construct models where the cone algebras are
Type II∞ or Type III (and even provide the finer IIIλ
classification). Models with the same superselection sectors
can have different type of cone algebras!3

• If dim(ω, ω) < ∞, it follows that ω can be decomposed into
irreducibles.

2Ogata, J. Math. Phys. 63 (2023)
3Jones, PN, Penneys, Wallick (+ appendix Izumi). arXiv:2307.12552. To

appear in FoM Sigma.
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Further structure



Duality / rigidity

Definition
A conjugate for ω → ∆DHR is a triple (ω, r, r)with r → (id, ω⊗ ω) and
r → (id, ω⊗ ω) such that

(r∗ ⊗ idω)(idω⊗r) = idω (r∗ ⊗ idω)(idω⊗r) = idω .

This gives a conjugate charge, and allows us to define the
quantum dimension.

Warning
In the toric code (and many other models), we can explicitly
construct conjugates. However, it is not known if conjugates
automatically exist. In QFT, there are examples of sectors for
which a dual does not exist.



Completeness



Have we found all sectors?
We have constructed four different (irreducible) sectors for the
toric code (as expected)!

Question
Are these all irreducible sectors? That is, are there irreducible
representations satisfying the superselection criterion that are
not equivalent to one of these four?

Theorem (Bols-Vadnerkar, arXiv:2310.19661)
For each irreducible representation (C, ω) ofD(G) there is an
anyon sector π(C,ω). The representations {π(C,ω)}(C,ω) are
pairwise disjoint, and any anyon sector is unitarily equivalent to
one of them.



The category ∆DHR

The quantum doubleD(G) of a finite groupG is a certain Hopf
algebra constructed from C[G]:
• Repf D(G) is a modular tensor category.
• Irreps are in 1-1 correspondence with pairs (C, ω), where C is
a conjugacy class ofG, and ω an irreducible representation
of the centraliser of some g → C .

• In particular, forG = Z2 there are four irreps.

Theorem
The category∆f

DHR (i.e., restrict to finite direct sums) for the toric
code is braided tensor equivalent to RepD(Z2).

Proof sketch.
We have representatives of the four sectors, which we can map
to irreps ofD(Z2). These are all irreducible sectors.



Non-abelian quantum double model
The quantum double model can be defined for any finite groupG
(with local Hilbert spaceHx = C|G|).
• IfG abelian, analysis is very similar to toric code

• For non-abelian, can define ribbon operators similar to path
operators

• However, if irrep ofD(G) has d = dim > 1, corresponding
ribbon operators come in multiplets

• Easier to construct amplimorphisms ω : A → Md(A)

• Can bemapped back to endomorphisms of Aaux using
properly infiniteness of cone algebra

• Obtain the category Repf D(G) as expected.1

1Bols, Hamdan, PN, Vadnerkar, arXiv:2503.15611



Open questions
• Is this category indeed an invariant?

• When can we prove conjugates exist? (Note: if ω has a
conjugate, it follows that dim(ω, ω) < ∞)

• Can we find (physically meaningful) conditions that
guarantee that the category is modular?

• Which states lead to an interesting superselection sector
theory?



Stability



Approximately factorisable autom.

Definition (Informal)
Let α → Aut(A) be an automorphism. We say it is approximately
factorisablea if for any cone Λ and δ > 0

1. There are automorphims βΛ, β̃Λ of A(Λ) and similarly for Λc,
together with automorphisms Ξ, Ξ̃ acting only ‘near the
boundary’ of Λ and unitaries v, v̂ such that:

α = Ad(v) ◦ Ξ ◦ (βΛ ⊗ βΛc)

α−1 = Ad(ṽ) ◦ Ξ̃ ◦ (β̃Λ ⊗ β̃Λc)

2. The unitaries v and ṽ can be approximated by unitaries in
translates of cones slightly wider opening angle than Λδ with
error decaying fast enough.

aSee Ogata, arXiv:2106.15741 for details



Approximately factorisable autom.



Where do these come from?
• These are a generalisation of finite-depth quantum circuits

• Also come from quasi-local automorphisms, i.e. α → Aut(A)
satisfying a suitable Lieb-Robinson bound.

Theorem
LetHΛ be some gapped local dynamics satisfying the local
topological order conditions. LetH ′

Λ = HΛ + ΦΛ, where ΦΛ is
some sufficiently small perturbation. ThenH ′

Λ is gapped as well,
and the ground states (obtained as weak-∗ limits of local ground
states) of both models are related by a approximately
factorisable automorphism.

This is a combination of results by Bravyi, Hastings, Michalakis &
Zwolak (JMP 51, 2010 and CMP 322, 2013) and Bachmann,
Nachtergaele, Michalakis and Sims (CMP 309, 2012).



Phases of matter

Definition
Two states ω1, ω2 are said to be in the same (quantum) phase if
there is some approximately factorisable automorphism α such
that ω1 ◦ α = ω2.

Question
Suppose that ω1 and ω2 are in the same phase. How are the
categories∆DHR(ω1) and∆DHR(ω2) related?



Approximate Haag duality
Because α in general is not an automorphism of cone algebras,
π0 ◦ α needs not satisfy Haag duality for cones even if π0 does.
⇒ need a weaker notion!

Definition (Approximate Haag duality)
A representation π0 of A is said to satisfy approximate Haag
duality (for cones) if for every cone Λ and ε > 0 small enough,
there is a unitary UΛε (inB(H0)) andRε > 0 such that

π0(A(Λ
c))′ ⊂ UΛ,επ0(A((Λ⇒Rε)ε))

′′U∗
Λ,ε.

Moreover, UΛ,ε can be approximated by unitaries in the cone von
Neumann algebras with error going to zero fast enough.



Approximate Haag duality

Remark
If π satisfies Haag duality for cones, it also satisfies approximate
Haag duality.

Proposition (Ogata)
Approximate Haag duality is stable, in the sense that if π satisfies
approximate Haag duality, then so does π ◦ α.



Approximate Haag duality



Sector theory with approximate
Haag duality
Approximate Haag duality is enough to develop a sector theory
along the same lines as before.
• Superselection criterion is the same

• Aaux :=
⋃

Λ∈C(θ,φ) π0(A(Λ
c))′

‖·‖

• Don’t get strict localisation of representations, but get
decaying tails

• But image still ends up in Aaux!

• Same is true for intertwiners

• Braiding is more complicated, as ω ◦ σ *= σ ◦ ω if localised in
distinct cones due to decaying tails: have to do a limiting
procedure



Stability

Theorem (Ogata, arXiv:2106.15741)
Let Φ1,Φ2 be two uniformly bounded finite range interactions on
Z2 with pure gapped ground states ωi. Suppose that there is an
approximate factorisable automorphism α such that ω1 = ω2 ◦ α
and that one (and hence both) of the GNS representations πωi

satisfies approximate Haag duality. Then the corresponding DHR
catgories are unitarily braided monoidally equivalent.

Hence the category of superselection sectors is an invariant of
the phase!2

2See also Cha, PN, Nachtergaele, arXiv:1804.03203



Long-range entanglement



Product states
The existence of anyons in the toric code is possible because
the state has long-range entanglement.

Definition
Let ω be a pure state on A. Then ω is a product state with respect
to a cone Λ if there are states ωΛ on AΛ and ωΛc on A(Λc) such
that ω ≈ ωΛ ⊗ ωΛc .

Proposition
Let ω be a pure product state with respect to some cone Λ. Then
πω(A(Λ))′′ is a Type I factor and we haveRΛ = R′

Λc .

Proof sketch.
The GNS representation factorises asHΛ ⊗HΛc , with πω(A(Λ))
acting on the first factor, and πω(A(Λc)) on the second. By
irreducibility of πω , πω(A(Λ))′′ = B(HΛ)⊗ I . We see Haag duality
by taking commutants.



Sector theory

Theorem (PN, Ogata arXiv:2102.07707)
Let ω be a pure state which is a product state with respect to
some cone Λ. Then the sector theory with respect to πω is trivial,
in the sense that every representation satisfying the SSC is a
(possibly infinite) direct sum of copies of πω .

Proof sketch.
Localise π in Λ. Then we get an equivalent πΛ and a normal
endomorphism πΛ : RΛ → RΛ. But this must be some direct sum
of the identity representation.

• We only need ω being product with respect to a single cone,
however the superselection criterion must hold for all cones.

• It is important that ω is pure, which impliesRΛ is a factor.



Long-range entanglement

Definition
A state ω is said to be long-range entangled if ω ◦ α is not a
product state with respect to a cone for any quasi-factorisable
automorphism α.

Corollary
If ω is not long-range entangled, the corresponding
superselection structure∆DHR(ω) is trivial.

Thus you need long-range entanglement to get anyons!



Completeness: alternative
approach



Completeness: alternative
approach
The previous result relies on detailed knowledge of the quantum
double model and its frustration-free ground state.

There is an alternative approach based on the Jones index of a
certain subfactor.
This is based on analogous results for rational conformal field
theory.3
• Consider two disjoint cones ΛA and ΛB such that...
• .. there is a Type I factorN such thatRΛA ⊂ N ⊂ R′

ΛB
.

• This holds for quantum double models
• Can define two von Neumann algebras:

RAB := RΛA ∨RΛB , R̂AB := R′
(ΛA∪ΛB)c

3Kawahigashi, Longo, Müger, Commun. Math. Phys. 219 (2001)



Cone algebras



Relation between the two algebras
• From locality it follows thatRAB ⊂ R̂AB

• However in general the two are not equal (even if Haag
duality holds)!

• From irreducibility of π0, it follows thatRAB and R̂AB are
factors

• ... andR′
AB ∩ R̂AB = CI .

• HenceRAB ⊂ R̂AB is an irreducible subfactor

• Let ωA,B be localised in ΛA,B and v → (ωA, ωB) unitary. Then
v → R̂AB

• But in general v /→ RAB !



Relative sizes

Main idea
The algebra R̂AB is bigger because it contains the charge
transporters. Hence if we can “quantify” howmuch bigger, we
may learn something about the number of sectors.

We can use the Jones index [R̂AB : RAB]:
• [R̂AB : RAB] ≥ 1with equality iff R̂AB = RAB

• If [R̂AB : RAB] < ∞, there are b0, . . . , bn → R̂AB such that

R̂AB =

{
n∑

i=0

aibi : ai → RAB

}
.



Upper bound on number of sectors

Theorem (PN, J Math Phys 54 (2013))
The number of (irreducible) superselection sectors is bounded
from above by

µAB := inf
ΛA∪ΛB

[R̂AB : RAB].

If each sector has a conjugate, we have
∑

i d(ωi)
2 ≤ µAB .

• For abelian quantum double models, we can show
R̂AB !α (G×G).

• It follows [R̂AB : RAB] = 4 for the toric code.

• Since we have constructed four sectors, these must be all!



Summary



Summary
• Can obtain a braided C∗-category of superselection sectors
from first principles from local dynamics

• ... using only a few assumptions ((approximate) Haag duality
and ground state gap)

• Anyons can be identified with representations satisfying
π ! A(Λc) ∞= π0 ! A(Λc)

• Category can be constructed explicitly in models such as the
toric code or quantum double, and gives the expected result

• The category is an invariant of the quantum phase

• Need long-range entanglement to get non-trivial sectors!


